

Exotic Beam Summer School: Accelerators and Beams

26 July, 2011 Bradley M. Sherrill FRIB Chief Scientist

Accelerators are used to produce important isotopes and make beams of them

Facility for Rare Isotope Beams J.S. Department of Energy Office of Science /lichigan State University

Rare Isotope Production Mechanisms

- There are a variety of nuclear reaction mechanisms used to add or remove nucleons (jargon)
- Spallation
- Fragmentation
- Coulomb fission (photo fission)
- Nuclear induced fission
- Light ion transfer
- Fusion-evaporation (cold, hot, incomplete, ...)
- Fusion-Fission
- Deep Inelastic Transfer
- Charge Exchange

There is no best method. Many still have interesting physics question relevant to their application to produce rare isotopes.

Production Mechanisms – High Energy

- Fragmentation (used at NSCL, GSI, RIKEN, GANIL, FRIB)
 - Projectile fragmentation of high energy (>50 MeV/A) heavy ions
 - Target fragmentation of a target with high energy massive ion. In the heavy ion reaction mechanism community this would include *intermediate* mass and target fragments.
- Spallation (ISOLDE, TRIUMF-ISAC, EURISOL, SPES, ...)
 - Name comes from spalling or cracking-off of target pieces.
 - Major ISOL mechanisms, e.g. ¹¹Li made from spallation of Uranium.
- Fission (HRIBF, ARIEL, ISAC, JYFL, ...)
 - There is a variety of ways to induce fission (photons, protons, neutrons (thermal, low, high energy)
 - The fissioning nuclei can be the target (HRIBF, ISAC) or the beam (GSI, NSCL, RIKEN, FAIR, FRIB).
- Coulomb Breakup (GSI) At beam velocities of > 200 MeV/u the equivalent photon flux is so high the GDR excitation cross section is many barns.
- Charge Exchange (GSI, NSCL, FRIB) a neutron or proton can change its charge with a proton or neutron; cross sections can be ≈mb at >100 MeV/u

Fragmentation (Projectile)

• Pictorial model (above 50 MeV/u)

- Parameterization of cross sections (EPAX 2 Sümmerer and Blank, Phys.Rev. C61(2000)034607)
 - Parameters fit to experimental data (exponential form function of removed nucleons)
 - Energy independent cross sections (true above 50 MeV/u or so)
 - Production cross section does not depend on the target (rates do)
- More detailed models (e.g. ABRABLA (K-H Schmidt *et al.* See <u>http://www-win.gsi.de/charms/</u>)
- Intranuclear Cascade Model (J.Cugnon, C.Volant and S.Vuillier, Nucl.Phys. A620 (1997) 475)

Production Mechanisms – High Energy

- Fragmentation (used at NSCL, GSI, RIKEN, GANIL, FRIB)
 - Projectile fragmentation of high energy (>50 MeV/A) heavy ions
 - Target fragmentation of a target with high energy massive ion. In the heavy ion reaction mechanism community this would include *intermediate mass and target fragments*.
- Spallation (ISOLDE, TRIUMF-ISAC, EURISOL, SPES, ...)
 - Name comes from spalling or cracking-off of target pieces.
 - Major ISOL mechanisms, e.g. ¹¹Li made from spallation of Uranium.
- Fission (HRIBF, ARIEL, ISAC, JYFL, ...)
 - There is a variety of ways to induce fission (photons, protons, neutrons (thermal, low, high energy)
 - The fissioning nuclei can be the target (HRIBF, ISAC) or the beam (GSI, NSCL, RIKEN, FAIR, FRIB).
- Coulomb Breakup (GSI) At beam velocities of > 200 MeV/u the equivalent photon flux is so high the GDR excitation cross section is many barns.
- Charge Exchange (GSI, NSCL, FRIB) a neutron or proton can change its charge with a proton or neutron; cross sections can be ≈mb at >100 MeV/u

Spallation

From Wikimedia Commons: http://en.wikipedia.org/wiki/File:Spallation.gif

Facility for Rare Isotope Beams U.S. Department of Energy Office of Science Michigan State University

Production Mechanisms – High Energy

- Fragmentation (used at NSCL, GSI, RIKEN, GANIL, FRIB)
 - Projectile fragmentation of high energy (>50 MeV/A) heavy ions
 - Target fragmentation of a target with high energy massive ion. In the heavy ion reaction mechanism community this would include *intermediate mass and target fragments*.
- Spallation (ISOLDE, TRIUMF-ISAC, EURISOL, SPES, ...)
 - Name comes from spalling or cracking-off of target pieces.
 - Major ISOL mechanisms, e.g. ¹¹Li made from spallation of Uranium.
- Fission (HRIBF, ARIEL, ISAC, JYFL, ...)
 - There is a variety of ways to induce fission (photons, protons, neutrons (thermal, low, high energy)
 - The fissioning nuclei can be the target (HRIBF, ISAC) or the beam (GSI, NSCL, RIKEN, FAIR, FRIB).
- Coulomb Breakup (GSI) At beam velocities of > 200 MeV/u the equivalent photon flux is so high the GDR excitation cross section is many barns.
- Charge Exchange (GSI, NSCL, FRIB) a neutron or proton can change its charge with a proton or neutron; cross sections can be ≈mb at >100 MeV/u

- ABRABLA See <u>http://www-win.gsi.de/charms/</u> for excellent details (Schmidt et al.) J. Benlluire et al. Phy. Rev. C 78 054605 (2008)
- LISE++ Fission Models (Tarasov et al.) LISE++
- The initial fragmentation step produces a wide range of excitation energies
- Can use photons, protons, nuclei, etc. to induce the fission
- Observation: For 500 MeV/u ²³⁸U the fragmentation and fission cross sections are approximately equal

Production Probability

• The probability of production of a fragment is related to its production cross section:

$$P = \frac{N(\tau)}{N_0} = \left(1 - e^{-\frac{\tau N_a \sigma}{A_t}}\right)$$

τ target thickness (g/cm²) N_a Avagodro's number A_t target mass number σ production cross section

 For production cross sections of 1 mb and target thickness of 1 g/cm² the production probability (and fragment rate) is high:

$$P = \frac{N(\tau)}{N_0} = \left(1 - e^{-\frac{1 \cdot 6.022 \times 10^{23} \cdot 1 \times 10^{-27}}{9}}\right) = 7 \times 10^{-5}$$

• Beam of 10^{14} /s beam would yield $7x10^9$ /s

FRI

Facility for Rare Isotope Beams U.S. Department of Energy Office of Science Michigan State University

Cross sections for production

$$\sigma = \pi \left(r_t + r_b \right)^2 \approx 600 \ mb$$

Actual: ¹⁶O +¹²C interaction cross section: 1000 mb (measured at 970 MeV/u)

Note: Above around 300 MeV/u the interaction length is shorter than the electronic stopping range of the ¹⁶O

One nucleon removal Around 50 mb (light nuclei)

P≈5%

2n removal 5 mb P = .5%

And so on Rule of thumb .1 x for each neutron removed

FRIB

Facility for Rare Isotope Beams U.S. Department of Energy Office of Science Michigan State University

Accelerators

- The particle accelerator used for production is often called the "driver"
- Types
 - Cyclotron (NSCL, GANIL, TRIUMF (proton driver), HRIBF (proton driver), RIKEN RIBF)
 - Synchroton (GSI, FAIR-GSI)
 - -LINAC (LINear ACcelerator) (FRIB, ATLAS ANL
 - Others like FFAGs (Fixed-Field Alternating Gradient) are currently not used
- Main Parameters
 - Top Energy (e.g. FRIB will have 200 MeV/u uranium ions)
 - Particle range (TRIUMF cyclotron accelerates hydrogen, hence is used for spallation)
 - Intensity or Beam Power (e.g. 400 kW = $8x6x10^{12}$ /s x 50GeV
 - Power = pµA x Beam Energy (GeV) (1pµA = 6x10¹²/s)

Cyclotrons

http://images.yourdictionary.com/cyclotron

Synchrotron

- Can achieve high energy at modest cost – tend to be used to deliver the highest energies
- Beam is accelerated in bunches
- Beam is accelerated internally and then ejected
- Intensity is limited by the Coulomb force of particles within a bunch (Space Charge)
- The magnets must ramp and this can be difficult to do quickly for superconducting magnets

http://universe-review.ca/R15-20-accelerators.htm

Linear Accelerator - LINAC

- There are many difference types
- At the right is the principle behind the drift tube linac introduced by Alverz
- Intensity can be very high
- Tuning can be difficult and complicated
- FRIB will have around 400 separate cavities
- Cost can be high
- Used to provide the highest intensities
- Electron linacs are widely used for medical applications

Rare Isotope Beam Production Techniques

 <u>Target spallation and fragmentation by light ions (ISOL – Isotope separation</u> on line)

World view of rare isotope facilities

• In-flight (projectile fragmentation is one production mechanism)

Less chemistry involved; beams at high energy

Facility for Rare Isotope Beams U.S. Department of Energy Office of Science Michigan State University

Advantages/Disadvantages of ISOL/In-Flight

In-flight: GSI RIKEN NSCL FRIB GANIL ANL RIBBAS	 Provides beams with energy near that of the primary beam For experiments that use high energy reaction mechanisms Luminosity (intensity x target thickness) gain of 10,000 Individual ions can be identified Efficient, Fast (100 ns), chemically independent separation Production target is relatively simple
ISOL: HRIBF ISAC SPIRAL ISOLDE SPES	 Good Beam quality (π mm-mr vs. 30 π mm-mr transverse) Small beam energy spread for fusion studies Can use chemistry (or atomic physics) to limit the elements released 2-step targets provide a path to MW targets

EURIOSOL • High beam intensity leads to 100x gain in secondary ions

FRIB

400kW protons at 1 GeV is 2.4x10¹⁵ protons/s

In-Flight Production Example: NSCL's CCF

D.J. Morrissey, B.M. Sherrill, Philos. Trans. R. Soc. Lond. Ser. A. Math. Phys. Eng. Sci. 356 (1998) 1985.

Facility for Rare Isotope Beams, FRIB - USA

Facility for Rare Isotope Beams U.S. Department of Energy Office of Science Michigan State University

US Community's Major New Initiative – Facility for Rare Isotope Beams

FRIB

- Laboratory Director Konrad Gelbke, Project Director Thomas Glasmacher
- Estimate of TPC \$614.5M
- Project completion in 2020, managed for early completion in 2018
- Key features (unique)
 - 400 kW heavy ion beams
 - Efficient acceleration (multiple charge states)
 - Stopped and reaccelerated, separated beams
- Space for
 - Reaccelerated beams, uranium to 12 (15) MeV/u
 - Isotope harvesting

Facility for Rare Isotope Beams U.S. Department of Energy Office of Science Michigan State University

FRIB Facility Layout

Facility for Rare Isotope Beams U.S. Department of Energy Office of Science Michigan State University

FRIB

Details of the FRIB Accelerator

What New Nuclides Will FRIB Produce?

- FRIB will produce more than 1000 NEW isotopes at useful rates (4500 available for study)
- Theory is key to making by the right measurements
- Exciting prospects for study of nuclei along the drip line to mass 120 (compared to 24)
- Production of most of the key nuclei for astrophysical modeling
- Harvesting of unusual isotopes for a wide range of applications

Rates are available at http://groups.nscl.msu.edu/frib/rates/

Facility for Rare Isotope Beams U.S. Department of Energy Office of Science Michigan State University

Notional Equipment Layout for Fast, Stopped, and ReA3-ReA12

- FRIB experimental areas will use existing NSCL augmented by a new ReA12 experimental area (funded by MSU, to be completed Sept 1, 2011)
- ReA12 Upgrade is essential for much of the science of FRIB

U.S. Department of Energy Office of Science National Science Foundation Michigan State University

Key FRIB component: Beam Stopping

G. Savard, ANL, D. Morrissey NSCL LLN, GSI, et al.

Beams for precision experiments at very lowenergies or at rest and for reacceleration

- Cyclotron gas stopper
- Linear gas stopper
- Solid stopper (LLN (Belgium), KVI (Netherlands))

Facility for Rare Isotope Beams U.S. Department of Energy Office of Science Michigan State University

ReAccelerator (3 MeV/u) (ReA3): Concept

Requirements			
lon efficiency for all elements	> 20 %	EBIT charge breeder + high efficiency linac	
Beam rate capabilities	10 ⁸ ions/sec	Hybrid EBIS/T charge breeder	
High beam purity		A1900, EBIT CB, Q/A	
Low energy spread, short pulse length	1keV/u, 1nsec	Multiharmonic external buncher and tight phase control in SRF linac	

Energy upgrade of ReA3

High priority for NSCL/FRIB user community

Facility for Rare Isotope Beams U.S. Department of Energy Office of Science Michigan State University

ReA3 and Upgrade Path to Higher Energies (ReA6 and ReA12)

- Proposals for reaccelerated beam experiments with ReA3 will be accepted
- Continue to accept proposals for fast and stopped beam experiments
- Earliest start of (small scale) user program January 2013
- Operations budget has been approved by NSF
- Funding proposal has been submitted to NSF (pending)

ISAC @ TRIUMF

Highest power for On-Line facilities, we go up to 100μA @ 500MeV DC proton

ISAC has 3 exper. areas:

- Low energy (60ke∨)
- ISAC I (up 1.8 MeV/u)
- ISAC II (up to 16MeV/u, presently upgraded)

Suite of experimental stations:

- TRINAT, Beta-NMR, 8pi, tape-station, TITAN, Co-linear laser spec, polarised beam line, etc
- DRAGON, TUDA, TACTIC, GPS, TIGRESS, EMMA (2011), HERACLES

Target material for beam production includes U (UO and UC license) Ion sources: surface, laser, FEBIAD, ECR (test) TRIUMF part of collaborations for target and ion source R&D

Gordon Ball, TRIUMF

Present status of the Ariel Project

HRIBF

Argonne National Laboratory: CARIBU & Energy Upgrade & HELIOS: Unique Synergy

- Fission products of ²⁵²Cf spontaneous fission stopped in gas and accelerated
- CARIBU gives access to exotic beams not available elsewhere.
- Physics with beams from CARIBU (1 & 2 nucleon transfer reactions) needs the new energy regime opened by the Energy Upgrade (12 MeV/u).
- Solenoid Spectrometer greatly expands the effectiveness of both the fission fragment beams and the existing in-flight RIB program at these higher energies.

FRIB

Facility for Rare Isotope Beams U.S. Department of Energy Office of Science Michigan State University

RIKEN RI Beam Factory (RIBF)

Intense Heavy Ion beams (up to U) up to 345*A*MeV at SRC Fast RI beams by projectile fragmentation and U-fission at BigRIPS Operation since 2007

SRC: World Largest (Heaviest) Cyclotron

Facility for Rare Isotope Beams U.S. Department of Energy Office of Science Michigan State University

Facility for Antiproton and Ion Research

- Beams at 1.5 GeV/u
- 10¹²/s Uranium
- Research
 - Compressed matter
 - Rare isotopes
 - Antiproton
 - Plasma
 - Atomic physics
- Completion of the first stages are planned around 2018

http://www.fair-center.de/index.php?id=1

Facility for Rare Isotope Beams U.S. Department of Energy Office of Science Michigan State University

Closing Thoughts

- We have entered the age of designer atoms
 - new tool for science
- FRIB (and other facilities) will allow production of a wide range of new designer isotopes
 - Necessary for the next steps in accurate modeling of atomic nuclei
 - Necessary for progress in astronomy (chemical history, mechanisms of stellar explosions)
 - Opportunities for the tests of fundamental symmetries
 - Important component of a future U.S. isotopes program
- There are significant challenges remaining in modeling and understanding the best production mechanism

