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New territory to be explored 
with next-generation rare 
isotope facilities 

Accelerators are used to produce important 
isotopes and make beams of them 

blue – around 3000 
known isotopes 

Start with the stable isotopes 
(black) and make all the others 
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•  There are a variety of nuclear reaction mechanisms used to add or remove 
nucleons (jargon) 

• Spallation 

•  Fragmentation 
• Coulomb fission (photo fission) 

• Nuclear induced fission 

•  Light ion transfer 
•  Fusion-evaporation (cold, hot, incomplete, …) 

•  Fusion-Fission 
• Deep Inelastic Transfer 

• Charge Exchange 

Rare Isotope Production Mechanisms 

There is no best method. Many still have interesting physics question relevant to 
their application to produce rare isotopes. 
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•   Fragmentation (used at NSCL, GSI, RIKEN, GANIL, FRIB) 
o  Projectile fragmentation of high energy (>50 MeV/A) heavy ions 
o  Target fragmentation of a target with high energy massive ion. In the 

heavy ion reaction mechanism community this would include intermediate 
mass and target fragments. 

•   Spallation (ISOLDE, TRIUMF-ISAC, EURISOL, SPES, …) 
o  Name comes from spalling or cracking-off of target pieces. 
o  Major ISOL mechanisms, e.g. 11Li made from spallation of Uranium. 

•   Fission (HRIBF, ARIEL, ISAC, JYFL, …) 
o  There is a variety of ways to induce fission (photons, protons, neutrons 

(thermal, low, high energy) 
o  The fissioning nuclei can be the target (HRIBF, ISAC) or the beam (GSI, 

NSCL, RIKEN, FAIR, FRIB). 
•  Coulomb Breakup (GSI) At beam velocities of > 200 MeV/u the equivalent 

photon flux is so high the GDR excitation cross section is many barns. 
•   Charge Exchange (GSI, NSCL, FRIB) a neutron or proton can change its 

charge with a proton or neutron; cross sections can be ≈mb at >100 MeV/u 

Production Mechanisms – High Energy 
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• Pictorial model (above 50 MeV/u) 

• Parameterization of cross sections (EPAX 2 Sümmerer and Blank, Phys.Rev. 
C61(2000)034607) 

– Parameters fit to experimental data (exponential form function of removed nucleons) 
– Energy independent cross sections (true above 50 MeV/u or so) 
– Production cross section does not depend  on the target (rates do) 

• More detailed models (e.g. ABRABLA (K-H Schmidt et al. - See 
http://www-win.gsi.de/charms/) 

•  Intranuclear Cascade Model (J.Cugnon, C.Volant and S.Vuillier, Nucl.Phys. A620 (1997) 475 ) 

Fragmentation (Projectile) 

projectile 
target 
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•   Fragmentation (used at NSCL, GSI, RIKEN, GANIL, FRIB) 
o  Projectile fragmentation of high energy (>50 MeV/A) heavy ions 
o  Target fragmentation of a target with high energy massive ion. In the 

heavy ion reaction mechanism community this would include intermediate 
mass and target fragments. 

•   Spallation (ISOLDE, TRIUMF-ISAC, EURISOL, SPES, …) 
o  Name comes from spalling or cracking-off of target pieces. 
o  Major ISOL mechanisms, e.g. 11Li made from spallation of Uranium. 

•   Fission (HRIBF, ARIEL, ISAC, JYFL, …) 
o  There is a variety of ways to induce fission (photons, protons, neutrons 

(thermal, low, high energy) 
o  The fissioning nuclei can be the target (HRIBF, ISAC) or the beam (GSI, 

NSCL, RIKEN, FAIR, FRIB). 
•  Coulomb Breakup (GSI) At beam velocities of > 200 MeV/u the equivalent 

photon flux is so high the GDR excitation cross section is many barns. 
•   Charge Exchange (GSI, NSCL, FRIB) a neutron or proton can change its 

charge with a proton or neutron; cross sections can be ≈mb at >100 MeV/u 

Production Mechanisms – High Energy 
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Spallation 

From Wikimedia Commons: http://en.wikipedia.org/wiki/File:Spallation.gif 
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Production Mechanisms – High Energy 
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• Pictorial Model 

• ABRABLA - See http://www-win.gsi.de/charms/ for excellent details (Schmidt 
et al.) – J. Benlluire et al. Phy. Rev. C 78 054605 (2008) 

•  LISE++ Fission Models (Tarasov et al.) LISE++ 

•  The initial fragmentation step produces a wide range of excitation energies 
• Can use photons, protons, nuclei, etc. to induce the fission  

• Observation: For 500 MeV/u 238U the fragmentation and fission cross sections 
are approximately equal 

Fission 

projectile 
target 
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Production Probability 

•  The probability of production of a fragment is related to its production 
cross section: 

•  For production cross sections of 1 mb and target thickness of 1 g/cm2 
the production probability (and fragment rate) is high: 

• Beam of 1014/s beam would yield 7x109 /s 

τ target thickness (g/cm2) 
Na Avagodro’s number 
At target mass number 
σ production cross section 

€ 

P =
N(τ)
N0

= 1− e
−
1⋅6.022×1023 ⋅1×10-27

9
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Cross sections for production 
Beam 
(into page) 

Target 

rt rb 

18O 
17N 
16C 
15B 

14Be 
13Li 12Li 11Li 

One nucleon 
removal 
Around 50 mb 
(light nuclei) 

P ≈ 5% 

2n removal 
5 mb 
P = .5% 

And so on 
Rule of thumb 
.1 x for each 
neutron removed 

Actual: 16O +12C interaction cross section: 
 1000 mb (measured at 970 MeV/u) 

Note: Above around 300 MeV/u the 
interaction length is shorter than the 
electronic stopping range of the 16O 
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Accelerators 

•  The particle accelerator used for production is often called the 
“driver” 

•  Types 
– Cyclotron (NSCL, GANIL, TRIUMF (proton driver), HRIBF (proton 

driver), RIKEN RIBF) 
– Synchroton (GSI, FAIR-GSI) 
– LINAC (LINear ACcelerator) (FRIB, ATLAS - ANL 
– Others like FFAGs (Fixed-Field Alternating Gradient) are currently 

not used 

• Main Parameters 
– Top Energy (e.g. FRIB will have 200 MeV/u uranium ions) 
– Particle range (TRIUMF cyclotron accelerates hydrogen, hence is 

used for spallation) 
– Intensity or Beam Power (e.g. 400 kW = 8x6x1012/s x 50GeV 
– Power = pµA x Beam Energy (GeV)   ( 1pµA = 6x1012 /s) 
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• Relatively easy to operate 
and tune (only a few parts. 

•  Tend to be used for 
isotope production and 
places where reliable and 
reproducible operation are 
important 

•  Intensity is moderately 
high, acceleration 
efficiency is high, cost low 

• Relativity is an issue, so 
energy is limited to a few 
hundred MeV/u. 

• RIKEN Superconducting 
Ring Cyclotron 350 MeV/u 

Cyclotrons 

http://images.yourdictionary.com/cyclotron 
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• Can achieve high energy at 
modest cost – tend to be used 
to deliver the highest energies 

• Beam is accelerated in 
bunches 

• Beam is accelerated internally 
and then ejected 

•  Intensity is limited by the 
Coulomb force of particles 
within a bunch (Space Charge) 

•  The magnets must ramp and 
this can be difficult to do 
quickly for superconducting 
magnets 

Synchrotron 

http://universe-review.ca/R15-20-accelerators.htm 
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•  There are many difference types 

• At the right is the principle 
behind the drift tube linac 
introduced by Alverz 

•  Intensity can be very high 

•  Tuning can be difficult and 
complicated 

•  FRIB will have around 400 
separate cavities 

• Cost can be high 

• Used to provide the highest 
intensities 

• Electron linacs are widely used 
for medical applications 

Linear Accelerator - LINAC 

βλ/2 

f - frequency 

Β = (v/c) 

+ − + − 

βλ/2 
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Rare Isotope Beam Production Techniques 
•  Target spallation and fragmentation by light ions (ISOL – Isotope separation 

on line) 

• Photon or particle induced fission  

•  In-flight Separation following nucleon transfer, fusion, projectile fragmentation/
fission   

beam 

target 

beam 

target 

Target/Ion Source 
Post 
Acceleration Accelerator 

Neutrons 
Post 
Acceleration 

Fragment Separator 

Beam 

Gas catcher/ solid catcher + ion source 

Beams used without stopping 

Post 
Acceleration 

Accelerator 

Reactor 

Protons Accelerator 

Uranium Fission 

Electrons 
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World view of rare isotope facilities 

Black – production in target 
Magenta – in-flight production 

Ariel 
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• ISOL 

• In-flight (projectile fragmentation is one production mechanism) 

Jargon 

Target/Ion Source 
Post 
Acceleration Accelerator 

Separator 

Beam 
Accelerator 

Fragment 

400kW protons at 1 GeV is 2.4x1015 protons/s 

Less chemistry involved; beams at high energy 



 Slid 19!
Brad Sherrill EBSS July 2011, Slide 19 

•  Good Beam quality  (π mm-mr vs. 30 π mm-mr 
transverse) 

•  Small beam energy spread for fusion studies 
•  Can use chemistry (or atomic physics) to limit the 

elements released 
•  2-step targets provide a path to MW targets 
•  High beam intensity leads to 100x gain in secondary ions 

Advantages/Disadvantages of ISOL/In-Flight 

• Provides beams with energy near that of the primary beam 
– For experiments that use high energy reaction mechanisms 
– Luminosity (intensity x target thickness) gain of 10,000 
–  Individual ions can be identified 

• Efficient, Fast (100 ns), chemically independent separation 
• Production target is relatively simple 

In-flight: 
GSI 
RIKEN 
NSCL 
FRIB 
GANIL 
ANL 
RIBBAS …  

ISOL: 
HRIBF 
ISAC 
SPIRAL 
ISOLDE 
SPES 
EURIOSOL 

400kW protons at 1 GeV is 2.4x1015 protons/s 
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In-Flight Production Example:  NSCL’s CCF 

fragment yield after target fragment yield after wedge fragment yield at focal plane 

Example: 86Kr → 78Ni K500 

K1200 
A1900 

production 
target 

ion sources 

coupling 
line 

stripping 
foil 

wedge 

focal plane 

Δp/p = 5% 
transmission 
of 65% of the 
produced 78Ni 

86Kr14+, 
12 MeV/u 

86Kr34+, 
140 MeV/u 

D.J. Morrissey, B.M. Sherrill, Philos. Trans. R. Soc. Lond. Ser. A. Math. Phys. Eng. Sci. 
356 (1998) 1985. 
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Facility for Rare Isotope Beams, 
FRIB - USA 
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US Community’s Major New Initiative – 
Facility for Rare Isotope Beams 

•  Laboratory Director Konrad 
Gelbke, Project Director 
Thomas Glasmacher 

•  Estimate of TPC $614.5M 
•  Project completion in 2020, 

managed for early completion 
in 2018 

•  Key features (unique) 
•  400 kW heavy ion beams 
•  Efficient acceleration 

(multiple charge states) 
•  Stopped and reaccelerated, 

separated beams 
•  Space for  

•  Reaccelerated beams, 
uranium to 12 (15) MeV/u 

•  Isotope harvesting 

FRIB 
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FRIB Facility Layout 
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Details of the FRIB Accelerator 

Β=0.04 β = 0.08 β = 0.2 β = 0.5 

Superconducting 
RF cavities 
4 types 
≈ 344 total 
Epeak ≈ 30 MV/m 
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What New Nuclides Will FRIB Produce?  
•  FRIB will produce more 

than 1000 NEW 
isotopes at useful rates 
(4500 available for 
study) 

•  Theory is key to making 
the right measurements 

•  Exciting prospects for 
study of nuclei along the 
drip line to mass 120 
(compared to 24) 

•  Production of most of 
the key nuclei for 
astrophysical modeling 

•  Harvesting of unusual 
isotopes for a wide 
range of applications 

Rates are available at http://groups.nscl.msu.edu/frib/rates/  
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Notional Equipment Layout for Fast, 
Stopped, and ReA3-ReA12 

•  FRIB experimental areas will use existing NSCL augmented by a new 
ReA12 experimental area (funded by MSU, to be completed Sept 1, 2011) 

• ReA12 Upgrade is essential for much of the science of FRIB 
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Key FRIB component: Beam Stopping  

•  Cyclotron gas stopper 
•  Linear gas stopper 
•  Solid stopper (LLN (Belgium), KVI 

(Netherlands)) 

G. Savard, ANL, D. Morrissey NSCL 
LLN, GSI, et al. 

Beams for precision experiments at very low-
energies or at rest and for reacceleration 

Fast ions 
He gas 
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ReAccelerator (3 MeV/u) (ReA3): Concept 

Gas	
  stopper	
  

Mass	
  
separator	
  

Q/A	
  
Separator	
  

Charge	
  	
  
Breeder	
  

>	
  50	
  MeV/u	
  
Beams	
  

Multi 
Harmonic 
Buncher 

80 MHz 
RFQ 

80 MHz 
SRF 

β=4.1% 

80 MHz 
SRF 

β=8.5% 

N+         1+  

up	
  to	
  3	
  MeV/u	
  beam	
  

(upgrade	
  to	
  12	
  MeV/u)	
  

1+ N+ 

Requirements 
Ion efficiency for all 
elements 

> 20 % EBIT charge breeder + high 
efficiency linac 

Beam rate capabilities  108 ions/sec Hybrid EBIS/T charge breeder 

High beam purity A1900, EBIT CB, Q/A 
Low energy spread,  
short pulse length 

1keV/u, 1nsec Multiharmonic external buncher and 
tight phase control in SRF linac 

D. Leitner 
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Energy upgrade of ReA3 
 High priority for NSCL/FRIB user community 

ReA3 (commissioning in 2012?) 

Upgrade path to ReA6 requires minor disruption of ReA3 operations 
Upgrade path from ReA6 to ReA12 is non-disruptive 
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ReA3  and Upgrade Path to Higher Energies  
(ReA6 and ReA12) 

ReA6 
ReA9/12 

• PAC 37 will be held in late 2011 or early 2012 
– Proposals for reaccelerated beam experiments with ReA3 will be accepted 
– Continue to accept proposals for fast and stopped beam experiments 

• Earliest start of (small scale) user program January 2013  
• Operations budget has been approved by NSF 

•  Funding proposal has been submitted to NSF (pending) 
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Present status of the Ariel Project 

•  50 MeV, 500 kW superconducting e-linac funded 

• matching funding from BC province for buildings 
(funded June 2010) 

•  second proton beamline deferred until next 5YP 

Gordon Ball, TRIUMF 
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Recoil Mass 
Spectrometer 
(RMS) 

Injector for Radioactive 
Ion Species 1 (IRIS1) 

25MV Tandem 
Electrostatic 
Accelerator 

Daresbury Recoil 
Separator (DRS) 

Oak Ridge Isochronous 
Cyclotron (ORIC) 

On-Line Test 
Facility (OLTF) 

High Power Target 
Laboratory (HPTL) 

Injector for 
Stable Ion  
Species (ISIS) 

Enge 
Spectrograph 

HRIBF 
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CARIBU	
  
ATLAS	
  Energy	
  

Upgrade	
  

  Fission products of 252Cf spontaneous fission stopped in gas and accelerated 
  CARIBU gives access to exotic beams not available elsewhere. 
  Physics with beams from CARIBU (1 & 2 nucleon transfer reactions) needs the new energy regime 

opened by the Energy Upgrade (12 MeV/u) .  
  Solenoid Spectrometer greatly expands the effectiveness of both the fission fragment beams and the 

existing in-flight RIB program at these higher energies. 

Argonne National Laboratory: CARIBU & Energy Upgrade & 
HELIOS:  Unique Synergy 

CARIBU	
  upgrade	
  

G. Savard/ R. Janssens ANL 

HELIOS 
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RIPS GARIS 

60~100 MeV/nucleon 

CRIB (CNS)!

~5 MeV/nucleon 

350-400 MeV/nucleon 

Old facility 

New facility 

RIKEN RI Beam Factory (RIBF) 

BigRIPS 

SRC 

RILAC 

AVF 

RRC fRC 

IRC 

Experiment facility 

Accelerator 

SHARAQ (CNS) 

SAMURAI 
ZeroDegree 

SHE (eg. Z=113) 

Intense Heavy Ion beams (up to U) up to 345AMeV at SRC 
Fast RI beams by projectile fragmentation and U-fission at BigRIPS 
Operation since 2007 �

several MeV/nucleon 
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SRC: World Largest (Heaviest) Cyclotron 
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Facility for Antiproton and Ion 
Research 

• Beams at 1.5 GeV/u 

•  1012/s Uranium 
• Research 

– Compressed matter 
– Rare isotopes 
– Antiproton 
– Plasma 
– Atomic physics 

• Completion of the first 
stages are planned around 
2018 

http://www.fair-center.de/index.php?id=1 
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Closing Thoughts 

• We have entered the age of designer atoms 
– new tool for science 

•  FRIB (and other facilities) will allow 
production of a wide range of new designer 
isotopes 
– Necessary for the next steps in accurate 

modeling of atomic nuclei 
– Necessary for progress in astronomy 

(chemical history, mechanisms of stellar 
explosions) 

– Opportunities for the tests of fundamental 
symmetries 

– Important component of a future U.S. isotopes 
program 

•  There are significant challenges remaining 
in modeling and understanding the best 
production mechanism 


