Nuclear reaction experiments with rare isotopes: Probing nuclear structure, reactions and nucleosynthesis (with (d,p) reactions)

> Jolie A. Cizewski Rutgers University cizewski@rutgers.edu

Verifying nuclear shell model

"Flat" harmonic oscillator potential with positive spin-orbit interaction

Confirming single-particle structure via (d,p) reactions at N=82

 Measure nuclear reaction in which ADD neutron to initial nucleus

$${}^{N+Z}_{Z}X_{N}({}^{2}_{1}H_{1}, {}^{1}_{1}H_{0}){}^{N+1+Z}_{Z}X_{N+1}$$

$${}^{140}_{58}Ce_{82}(d, p){}^{141}_{58}Ce_{83}$$

- Energy of proton \Rightarrow Excitation energy in final nucleus
- Intensity of protons as function of angle ⇒ angular momentum transferred

Neutron transfer (d,p) Reactions in Normal Kinematics

■Favorable kinematics → Good Q-value Resolution

- Deuteron beams are easy and cheap to produce
- Only applicable to stable targets

EBSS July 2011

THE STATE UNIVERSITY OF NEW JERSE

Angle(c.m.)

Evidence for Shell Structure: r process abundances of elements

Solar abundances of r-process elements as function of mass

Peaks at isotopes with neutron numbers 82 and 126

r process is robust, even oldest stars

<u>http://www.int.washington.edu/talks/</u> WorkShops/int_06_2a/People/Cowan_J/cowan_int.pdf

Evolution of nuclear shell structure?

CENTER OF EXCELLENCE FOR RADIOACTIVE ION BEAM STUDIES FOR STEWARDSHIP SCIENCE THE STATE UNIVERSITY OF NEW JERSE

Evolution of nuclear shell structure?

J. Dobaczewski, et al. PRC 53, 2809 (1996) B. Pfeiffer, et al., NPA 693, 282 (2001).

EBSS July 2011

Neutron-rich nuclei & shell closures

CENTER OF EXCELLENCE FO RADIOACTIVE ION BEAM STUD FOR STEWARDSHIP SCIENCI

What are neutron orbitals N>82, Z=50?

EBSS July 2011

Neutron transfer (d,p) Reactions in Inverse Kinematics

■Unfavorable kinematics → Reduced Q-value Resolution

Rare Ion Beams (RIBs) are difficult and expensive to produce

Applicable to all isotopes which can be made into a beam; need $\approx 10^4$ particles/second

Isotope Separator On Line for RIBs: Holifield Radioactive Ion Beam Facility

HRIBF neutron-rich beams from p-induced fission of ²³⁸U

FOR STEWARDSHIP SCIENCE

EBSS July 2011

Transfer measurements with 132 Sn, Z=50, N=82

¹³²Sn(d,p) what should expect to see?

¹³²Sn(d,p) kinematics @ 4.7 A-MeV

¹³²Sn(d,p) detectors

Oak Ridge Rutgers University Barrel Array (ORRUBA)

- •Flexible design to measure light products from transfer reactions
- •2 rings of 12, resistive and non-resistive Si detectors (1000 μ m, 500 μ m and 65 μ m)
- •~80% ϕ coverage, angles 47° \rightarrow 132°
- •324 electronics channels

S.D. Pain (Rutgers & ORNL), et al. NIM **B261**, 1122 (2007)

THE STATE UNIVERSITY OF NEW JERSE

ORRUBA position-sensitive (resistive strip) detectors

¹³²Sn(d,p) detectors

Oak Ridge Rutgers University Barrel Array (ORRUBA)

Early implementation of ORRUBA w/ SIDAR

10 resistive strip Si determination
140μm and 65μm)

•Angles $47^{\circ} \rightarrow 132^{\circ}$

EBSS July 2011

SIDAR: 6 segments of 16-strip Si detectors in lampshade mode

¹³²Sn(d,p) data in lab

¹³²Sn(d,p) Q-value

Getting the physics out

(d,p) exp cross sections

Spectroscopic factors

Simulation of ¹³²Sn+ CD₂ targets: Measure elastics for normalization

Elastic scattering of ¹³²Sn on CD₂ target

Elastic scattering of ¹³²Sn on deuterons

(d,p) spectroscopic factors

- Input for theoretical cross sections DWBA
 - Potentials (optical model)
 - Incoming deuteron, outgoing proton, neutron bound state

$$S = \left(\frac{d\sigma}{d\Omega}\right)_{\exp} / \left(\frac{d\sigma}{d\Omega}\right)_{DWBA}$$

CENTER OF EXCELLENCE FOR RADIOACTIVE ION BEAM STUDIES FOR STEWARDSHIP SCIENCE

(d,p) optical model parameters

Woods Saxon potential

- Radius: R=r_oA^{1/3}
- Diffuseness: a
- Volume term
- Surface absorption term (derivative of W-S)
- Spin-orbit term (Thomas shape)

Deuteron & proton Neutron: to fit the binding energy

 $U(r) = -Vf(r, R, a) - iW_D g(r, R'a') - V_{SO} r^{-1} (d/dr) f(r, R_{SO}, a_{SO})$

Satchler, Intro to Nuclear Reactions

EBSS July 2011

A(d,p)B spectroscopic factors

Input for theoretical cross sections DWBA

- Potentials (optical model)
 - Incoming deuteron, outgoing proton, neutron bound state
- Wave function of transferred particle, e.g., 2f_{7/2} neutron

$$I_{An}^{B} = A_{\ell sj} \varphi_{\ell sj}(r) \qquad S_{\ell sj} = \left| A_{\ell sj} \right|^{2}$$

$$S = \left(\frac{d\sigma}{d\Omega}\right)_{\exp} / \left(\frac{d\sigma}{d\Omega}\right)_{DWBA}$$

S≈1 ⇔ essentially pure single-particle wave functions

Identified $2f_{7/2}$, $3p_{3/2}$, $(3p_{1/2})$, $2f_{5/2}$ neutron strength in ^{133}Sn

E _x (keV)	J^{π}	Config	SF
0	7/2-	2f _{7/2}	0.86(16)
854	3/2-	3p _{3/2}	0.92(18)
1363(31)	(1/2-)	3p _{1/2}	1.1(3)
2005	(5/2-)	2f _{5/2}	1.1(2)

K.L. Jones et al. Nature, **465**,454 (2010)

N=83 systematics

What are neutron orbitals N>50, Z≈28?

EBSS July 2011
N>51: $3s_{1/2} \& 2d_{5/2}$ neutron transfer

⁸³Ge Results

Comparison of Even $Z \le 40$, N = 51 Isotones

	⁸³ Ge	⁸⁵ Se	⁸⁷ Kr	⁸⁹ Sr	91
⁸³ Ge Exp			⁸³ Ge Thy		
E _x (MeV)	Jπ	S _{ℓj}	E _x (MeV)	S _{ℓj}	
0.0	(5/2)+	0.48(12)	0.0	0.73	
0.28(7)*	1/2+	0.50(13)	0.47	0.38	
J.S. T *247 keV from	homas, D. De beta decay, W	ean et al., PR inger et al.	C <u>76</u> , 044302	(2007)	

Summary of N=82, N=50 (d,p)

Developed techniques to measure (d,p) in inverse kinematics

- Measured single-neutron excitations in ¹³³Sn
 - Expected 2f_{7/2}, 3p_{3/2}, 3p_{1/2}, 2f_{5/2} states identified with S≈1
 - ¹³²Sn is one of best candidates for doubly magic nucleus
 - To see change in shell structure need to go more n-rich
- Measured single-neutron excitations in N=51 ⁸³Ge
 - 3s_{1/2} excitation comes down in energy vs 2d_{5/2}
 - Fragmentation of single-particle strengths
 - Open question: how strong is double magic shell closure at ⁷⁸Ni with N=50 and Z=28?

Is everything so straightforward?

- Ambiguities in spectroscopic factors?
- Wave function of the deuteron?
- Can we improve energy resolution?
- Can neutron transfer inform astrophysical neutron capture (s and r) processes on rare isotopes?

(d,p) spectroscopic factors

- Output from theoretical cross sections compared to exp
- (relative) S≈1 ⇒ full spectroscopic strength
- Ambiguities in S?

Ambiguity in Single-Particle WF

Only constraint on potential is that correct binding energy of neutron (well depth) must be reproduced

Geometrical parameters not well-determined (radius, diffuseness)

Single-particle wavefunction (and SF) ambiguities

Ambiguity in Single-Particle WF

b=Single particle Asymptotic Normalization Coefficient, ANC

Ambiguity in Single-Particle WF

Geometrical parameters not well-determined (radius, diffuseness)

Peripheral reaction: only probe tail of WF Shape of asymptotic part of WF determined by binding energy (through k)

$$\varphi_{\ell}(r) \rightarrow b_{\ell_j} k h_{\ell}(ikr)$$

Change in geometry (r_0 ,a) is change in $b_{\ell j}$ Asymptotically:

$$\begin{split} V^B_{An} &
ightarrow S^{1/2}_{\ell j} b_{\ell j} k h_\ell(ikr) = C_{\ell j} k h_\ell(ikr) \ C^2_{\ell j} = S_{\ell j} b^2_{\ell j} \end{split}$$

For peripheral reactions, ANC C^2 is probed

Peripheral reactions: Model Independence of C²

ANC C is independent of bound-state properties But how limit uncertainties in spectroscopic factors?

Reducing s.p. uncertainties by constraining bound state parameters

A.M. Mukhamedzhanov and F.M. Nunes, Phys. Rev. C 72 (2005) 017602.

⁸⁶Kr(d,p) at ≈5 and ≈40 MeV/u: reducing ambiguities in spec factors

⁸⁶Kr(d,p) measured w/ 11 MeV deuterons.

Extracted spectroscopic factor and ANC C² vs single-particle ANC b K. Haravu et al. PRC 1, 938 (1970)

⁸⁶Kr(d,p) at ≈5 and ≈35 MeV/u: reducing ambiguities in spec factors

Proposal: Measure ⁸⁶Kr(d,p) w/ ≈35 MeV/u ⁸⁶Kr beam, SIDAR+ORRUBA

- Extract spectroscopic factors vs single-particle ANC b.
- Compare to ANCs C² constrained by low-E (d,p)

Is everything so straightforward?

- Ambiguities in spectroscopic factors?
- Wave function of the deuteron?
- Quenching of spectroscopic factors?
- Can we improve energy resolution?
- Can neutron transfer inform astrophysical neutron capture (s and r) processes on rare isotopes?

Deuteron is weakly bound; how does this affect transfer?

- Need to account for breakup of the deuteron:
 - Johnson, Soper, Tandy Finite-Range
 - ADiabatic Wave Approximation (FR-ADWA)
- Construct deuteron adiabatic wave from realistic deuteron optical potential (e.g., Reid interaction)
- Global optical model parameters, e.g., CH89
- Application: ¹³²Sn(d,p)
- References:
 - R.C. Johnson & P.J.R. Soper, PRC 1, 976 (1970)
 - R.C. Johnson and P.C. Tandy, NPA 235, 56 (1974)

EBSS July 2011

¹³²Sn(d,p) with FR-ADWA & CH89

¹³²Sn(d,p) with FR-ADWA & CH89

Spectroscopic factors extracted w/ FR-ADWA and CH89 optical model parameters

		Spectroscopic Factor	
Ex(keV)	nlj	DWBA	FR-ADWA
0	2f7/2	0.86 (7)	1.00 (8)
854	3p3/2	0.92 (7)	0.92 (7)
1363 ± 31	(3p1/2)	1.1 (2)	1.2 (2)
2005	(2f5/2)	1.1 (2)	1.2 (3)

Is everything so straightforward?

- Ambiguities in spectroscopic factors?
- Wave function of the deuteron?
- Can we improve energy resolution?
- Can neutron transfer inform astrophysical neutron capture (s and r) processes on rare isotopes?

Summary of Part I

- Developed techniques to measure (d,p) in inverse kinematics
- Measured single-neutron excitations in ¹³³Sn
 - Expected 2f_{7/2}, 3p_{3/2}, 3p_{1/2}, 2f_{5/2} states identified with S≈1
 - ¹³²Sn is one of best candidates for doubly magic nucleus
 - Conclusions robust when include realistic deuteron wave function AND global optical model parameters
- Measured single-neutron excitations in N=51 ⁸³Ge
 - 3s_{1/2} excitation comes down in energy vs 2d_{5/2}
 - Fragmentation of single-particle strengths
- Need to reduce ambiguities in spectroscopic factors because of minimal probe of nuclear interior
 - Path forward: measure at 2 different beam energies

Thank you – Part I

EBSS July 2011

Extra slides

Normal Kinematics

S.D. Pain

Inverse Kinematics

S.D. Pain

Peripheral Transfer Reactions

Reaction occurs at nuclear exterior

E ~ 1 MeV above Coulomb barrier

Single-particle SF determined from normalization to main peak

Distorted waves calculations performed with varying lower radial cutoffs

Peak magnitude nearly insensitive to cutoff out to $r_{cut} \sim 8$ fm

N=82, N=50 (d,p) Collaborations

Rutgers University J.A.C., R. Hatarik, B. Manning, P.D. O'Malley, T.P. Swan, Jeff Thomas Univ. Tennessee K.Y. Chae, R. Kapler, <u>Kate L. Jones</u>, Z. Ma, B.H. Moazen ORNL G. Arbanas, D.W. Bardayan, J.C. Blackmon, D. Dean, C.G. Gross, J.F. Liang, C.D. Nesaraja, Steve D. Pain, D. Shapira, M.S. Smith Tennessee Tech Ray L. Kozub, J.F. Shriner Jr. Michigan State Univ: Filomena Nunes Univ. North Carolina-Chapel Hill: R.P. Fitzgerald, D.W. Visser University of Surrey C. Harlin, N.P. Patterson, J.S. Thomas Colorado School of Mines K.A. Chipps, L. Erikson, U. Greife, R. Livesay Ohio University A.S. Adekola

Funded in part by the

U.S. DOE Office of Science & NNSA/SSAA & National Science Foundation

HE STATE UNIVERSITY OF NEW JE

Optical Potential

 \diamond Fitting the details of elastic scattering data requires more than simple diffraction from an opaque disk.

- ♦The most common model in fitting scattering data entails a complex potential and is called the optical model.
- \diamond The optical potential has the form: **U(r) = V(r) + iW(r)**.
- ♦The real part of the optical potential explains the scattering.

♦The imaginary part provides *absorption*; the removal of particles from the elastic scattering channel via nuclear reactions.

What is a Spectroscopic Factor?

- It's the norm of the overlap function between the initial state and the final state.
- Example for (d,p)
 - "How much does my recoiling nucleus look like my target nucleus plus a neutron in a given single particle state?"

¹³²Sn (N=82,Z=50) vs ²⁰⁸Pb (N=126,Z=82):

K.L. Jones et al. Nature, **465**,454 (2010)

N=83 Single Particle Energies

- Shell model theory, from states in other nuclei e.g. Z=54, 56 isotones
 Sakar and Sakar
 Phys. Rev. C64 014312 (2001).
- Reproduces candidate p_{1/2} state in ¹³³Sn
- Impact on masses, other nuclear properties, nuclear astrophysics

r-process abundances

Peaks of r-process abundances near "magic numbers", nuclear shell closures

BUT, models of nuclear structure from stability do not reproduce abundances \Rightarrow Change in nuclear structure far from stability?

r-process abundances

Peaks of r-process abundances near "magic numbers", nuclear shell closures BUT, different astrophysics models predict different abundances

 \Rightarrow Change in nuclear structure far from stability OR astrophysics OR ??

Nuclear reaction experiments with rare isotopes: Probing nuclear structure, reactions and nucleosynthesis (with (d,p) reactions)

> Jolie A. Cizewski Rutgers University cizewski@rutgers.edu

Review of part 1

- Goal: understanding single-particle character of nuclei far from stability
 - Important for nuclear structure
 - Important for synthesis of heavy elements in the cosmos
- Introduction to (d,p) reactions with RIBs
- Challenges with inverse kinematics
 - New instruments to detect light ions and heavy recoils
- Challenges with extracting the physics, e.g., spectroscopic factors

(d,p) in inverse kinematics Where do you put your detectors?

Getting the physics out

Elastic scattering

- To normalize the data
- Future: elastic scattering to inform optical model
- (d,p) exp absolute differential cross sections
- Spectroscopic factors

Is everything so straightforward?

Wave function of the deuteron?

- Can we improve energy resolution?
- Can neutron transfer inform astrophysical neutron capture (s and r) processes on rare isotopes?

Need enhanced resolution

- Sources of "poor" resolution
 - Thickness of target
 - Heavy beam loses energy in target doing reaction over range of energies
 - Energy and angle resolution of charged particle detectors
- Different approach to transfer: HELIOS
- Couple charged-particle and gamma-ray detectors

(d,p) reactions at ≈5 MeV/u

EBSS July 2011

Simulation of ¹³²Sn(d,p) @ 10 MeV/A – ORRUBA response

Probing N≈82,Z≈50 at 8-10 MeV/u with CARIBU at ATLAS

²⁵²Cf fission fragments: stopped & re-accelerated to 8-10 MeV/u

EBSS July 2011

Solution 2: Different experimental technique

With heavy beams: ¹³⁶Xe(d,p)¹³⁷Xe

Anticipate ¹³²Sn(d,p)¹³³Sn with ¹³²Sn from CARIBU B. P. Kay et al, in preparation

Need enhanced resolution

- Thinner targets, higher energy beams
- Different approach to transfer: HELIOS
 - <100 keV resolution with 10 MeV/u Xe beams on CD2 target</p>
- Open shell nuclei: need even better resolution
- Couple charged-particle and gamma-ray detectors
 - Increase resolution
 - Populate additional states
 - (Surrogate for neutron-induced reactions)

EBSS July 2011

ORRUBA and Gammasphere and CARIBU

Coupling ORRUBA + Gammasphere

 Gammasphere + FMA (or other system) for heavy recoils
 Full ORRUBA + End cap

Experimental developments approved at ATLAS

More physics with $(d,p\gamma)$

Surrogate for neutron capture?

EBSS July 2011

(n,γ) reactions & Nucleosynthesis

- Slow (s) and rapid (r)
 (n,γ) processes
- Unstable nuclei
- Can't measure (n,γ) directly when
 t_{1/2} < 100 days

Neutron capture on fission fragments: r process nucleosynthesis & applications

HE STATE UNIVERSITY OF NEW JERS

EBSS July 2011

Neutron Capture

Direct capture especially important near neutron shell closures

A≈¹³⁰Sn σ (n, γ) and sensitivities

A≈¹³⁰Sn σ (n, γ) and sensitivities

r-process sensitivity studies

Simulations of the r-process show huge, **global** sensitivity to the 130 Sn(n, γ) rate

¹³⁰Sn(n, γ) direct capture rate uncertain by $\approx 10^3$

(d,p) to $\ell = 1 \Leftrightarrow \text{direct } (n,\gamma)$

J. Beun, *et al.* J. Phys. G 36, 025201 (2009) T. Rauscher, *et al.* PRC 57 2031 (1998)

Neutron Capture near stability and surrogate technique

A(n,γ)(A+1)

S_n≈ 7 MeV

many levels

₇A+1_{N+1}

 \approx

≈

- Cross section vs neutron energy depends upon product of cross section of formation of compound nucleus AND decay of the compound nucleus
 - In principle for each spin, parity
- Theorists can calculate formation; difficult to calculate decay

 $\sigma_{n\gamma}(E_n) = \sum \sigma_n^{CN}(E_n, J, \pi) G_{\gamma}^{CN}(E_n, J, \pi)$ $J.\pi$

THE STATE UNIVERSITY OF NEW JERSE

 $_{Z}A_{N}$

(**n**,γ)

RADIOACTIVE ION BEAM STUDIES

FOR STEWARDSHIP SCIENCE

$$\sigma_{n\gamma}^{WE}(E_n) = \sigma_n^{CN}(E_n)G_{\gamma}^{CN}(E_n) = \sigma_n^{CN}(E_n)\frac{N(d,p\gamma)}{\varepsilon N(d,p)}$$

Surrogate ratio technique

- Ratio of experimental yields can reduce systematic uncertainties
- Assume similar compound nuclear cross sections
- Know one cross section \Rightarrow ratio gives the unknown

EBSS July 2011

FOR STEWARDSHIP SCIENCE

Can demonstrate that $(d,p\gamma)$ is (n,γ) surrogate?

- Choose pair of nuclei where (n,γ) has been measured vs E(neutron)
 - ^{171,173}Yb(n, γ)^{172,174}Yb by Wisshak et al.
- Measure (d,pγ) reaction in <u>normal kinematics</u> with
 - ≈18 MeV beam of deuterons
 - Detect gamma rays in coincidence with reaction protons
 - Energy of protons excitation energy in nucleus (above neutron separation energy)
- Analysis: Surrogate Ratios: ratios of intensities of collecting gamma rays = ratio of reaction cross sections

^{171,173}Yb(d,pγ) Normal Kinematics

STARS + LIBERACE @ 88-Inch Cyclotron, LBNL 6 Compton-suppressed clover Ge detectors 18-MeV d beam

Particle-Gamma Coincidences

-ray spectrum strength collected in "one" transition

Count rate comparison

Known: Neutron capture cross sections for ¹⁷¹Yb and ¹⁷³Yb from K. Wisshak et al, Phys Rev C **61**, (2000) 065801.

Cross section ratio 1

Are our assumptions valid?

- Is the assumption that form same CN in (d,p) as (n,γ) valid?
 - Does (d,p) populate same spin distribution as (n,γ)?

THE STATE UNIVERSITY OF NEW JE

- Are cross sections independent of spin?
 Are we in Weisskopf-Ewing limit?
 - Are we in Weisskopf-Ewing limit?

DICEBOX / experiment comparison

Intensity ratios of the $4^+ \Rightarrow 2^+$ and $6^+ \Rightarrow 4^+$ (ground state spins: ¹⁷¹Yb 1/2⁻, ¹⁷³Yb 5/2⁻):

	Intensity ratio: I(4+ to 2+) / I(6+ to 4+)		
Target	(d,pγ) experiment	DICEBOX (n,γ)	
¹⁷¹ Yb	3.0	J ^π = 0- or 1-, Ex = 8.2 MeV 50	
¹⁷³ Yb	1.85	J ^π = 2- or 3-, Ex = 7.5 MeV 10	$ \begin{array}{c} $

 \rightarrow subtract 6⁺ feeding of 4⁺ to get spin distribution closer to (n, \Box)

Known $\sigma(n,\gamma)$ vs $\sigma(n,\gamma)$ from ^{171,173}Yb(d,p γ)

(n,γ) cross sections from surrogate reaction

- Demonstrated surrogate ratios may work.
- Ongoing efforts to validate cross sections from surrogate reaction
- For (n,γ) away from stability requires (d,pγ) with beams,
 e.g., ORRUBA + Gammasphere

Summary lecture 2:

Need to improve resolution in (d,p)

- Run at higher energies
- Use thin targets
- Different approach: HELIOS
- Real improvements (<20 keV) requires (d,pγ)
 - E.g., Coupling ORRUBA to Gammasphere (GRETINA)
- Need to understand compound nucleus (n,γ), via validated surrogate technique, e.g., (d,pγ)
 - Important for nucleosynthesis of heavy elements
 - Important for applications (energy, forensics, security)

THE STATE UNIVERSITY OF NEW JERSE

Prospects for (d,p) and measuring (d,p γ) surrogates for (n, γ) are bright

CENTER OF EXCELLENCE FOR RADIOACTIVE ION BEAM STUDIE FOR STEWARDSHIP SCIENCE

THE STATE UNIVERSITY OF NEW JERS

Thank you – Part 2

Thanks go to:

K.L. Jones, S.D. Pain, J.S. Thomas, F. Nunes,

R. Kozub, R. Hatarik, A. Wuosmaa,

A. Adekola, M.E. Howard, B. Manning, P.D. O'Malley,

Work supported in part U.S. DOE Office of Science & NNSA/SSAA & National Science Foundation