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LECTURE TOPICS

e Computational graphs

e Gradient-descent optimization
o| ogistic regression

*Deep neural networks

®| earning tasks

eBest practices
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GOALS

eFach of us learns something today
*Stop me with any questions
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COMMUNITY

eFach of you arrived here with your own backgrounds, specialty, and path in
ife

eYour experience and expertise are valuable here, no matter what it is

o|f the activity is within your background, help others!

o|f you are totally (or a little) lost, ask for help!

o[t is our shared goal to have each of us leave with some new skill/

knowledge/understanding
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EXPERIMENTAL DATA
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Without Machine Learning With Machine Learning

*VERY SPECIFIC ] :

INSTRUCTIONS




Without Machine Learning } With Machine Learning

_— R

earning from data is a paradigm shift in
thinking about predictive models

/ \ sk VERY SPECFIC / \

INSTRUCTIONS
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NEURON MATHEMATICS
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Abstract

We show that standard multilayer feedforward networks with as few as a single
hidden layer and arbitrary bounded and nonconstant activation function are
universal approximators with respect to LP(u) performance criteria, for arbitrary
finite input environment measures p, provided only that sufficiently many hidden
units are available. If the activation function is continuous, bounded and
nonconstant, then continuous mappings can be learned uniformly over compact
input sets. We also give very general conditions ensuring that networks with
sufficiently smooth activation functions are capable of arbitrarily accurate
approximation to a function and its derivatives.
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COMPUTATIONAL GRAPH
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MACHINE LEARNING

SUPERVISED LEARNING



REGRESSION
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SUPERVISED LEARNING
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LOGISTIC REGRESSION
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LOGISTIC REGRESSION




CLASSIFICATION
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Summation
Features . . Output
+ Nonlinearity



CHECK: HOW MANY TRAINABLE PARAMETERS?

1

ON

- ] + e—Cwitxow,+b)

Summation
Features . . Output
+ Nonlinearity



K»\

N

DN
ke

Py ‘
S

Output

Hidden Layer

Features



CHECK: HOW MANY TRAINABLE PARAMETERS?
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CHECK: HOW MANY TRAINABLE PARAMETERS?
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Weight initialization: \What happens if we initialize all weights to same value?
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LOSS FUNCTIONS

Loss function

Mean squared error
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LOSS FUNCTIONS

Loss function

Mean squared error
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Learning (loss) curves

Training and validation loss (FL)

—— train i
-2 —— val
---- validation 107 1
1073 1
p) A v\" ]
l‘ﬂ"’\ 1'\d\lll R ‘\""?"'V"“\
/,\\'u““\ ’ V«.,,,\ -
1074 -
0 20 40 60 80 100
. Training and validation loss
108 -
‘ — loss Loss Curve
——— val loss
2.500000000000000
2.000000000000000
107 1
: 1.500000000000000
1.000000000000000
106 0.500000000000000
0.000000000000000
0 5 10 15 20 25 30 35
Generator Loss Discriminator Loss
0 20 40 60 80 100



TRAINING

Remember that our goal is NOT to minimize loss on training data!l

Learning curves
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AUTOMATIC DIFFERENTIATION

T TensorFlow Keras
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WHAT CAN WE DO WITH DEEP
LEARNING?
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CLASSIFICATION

Cross entropy:

J=—(ylog(y) + (1 — y)log(l —y))
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BEST PRACTICES

LITERATURE



CHOOSING AN ARCHITECTURE

HOW MANY LAYERS?
HOW MANY NODES PER LAYER?
LEARNING RATE

DROPOUT?

WHAT ACTIVATION FUNCTION(S)?

HOW MANY CONVOLUTION LAYERS?

FILTER SIZE?

STRIDE?

POOLING?




EXAMPLE WORKFLOW

PRE-TRAINED SN _ _ .| TRAIN FROM
MODELS SCRATCH
DATA
REPRESENTATION

MODIFY
ARCHITECTURE

BENCHMARK!



EXAMPLE WORKFLOW
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Model Cards for Model Reporting

M O D E L ( A R D S Margaret Mitchell, Simone Wu, Andrew Zaldivar, Parker Barnes, Lucy Vasserman, Ben

Hutchinson, Elena Spitzer, Inioluwa Deborah Raji, Timnit Gebru
{mmitchellai,simonewu,andrewzaldivar,parkerbarnes,lucyvasserman,benhutch,espitzer,tgebru}@google.com
deborah.raji@mail.utoronto.ca

Model Card

e Model Details. Basic information about the model.
— Person or organization developing model
— Model date
— Model version
— Model type
— Information about training algorithms, parameters, fair-
ness constraints or other applied approaches, and features
— Paper or other resource for more information
— Citation details
— License
— Where to send questions or comments about the model
e Intended Use. Use cases that were envisioned during de-
velopment.
— Primary intended uses
— Primary intended users
— Out-of-scope use cases
e Factors. Factors could include demographic or phenotypic
groups, environmental conditions, technical attributes, or
others listed in Section 4.3.
— Relevant factors
— Evaluation factors
e Metrics. Metrics should be chosen to reflect potential real-
world impacts of the model.
— Model performance measures
— Decision thresholds
— Variation approaches
e Evaluation Data. Details on the dataset(s) used for the
quantitative analyses in the card.
— Datasets
— Motivation
— Preprocessing
e Training Data. May not be possible to provide in practice.
When possible, this section should mirror Evaluation Data.
If such detail is not possible, minimal allowable information
should be provided here, such as details of the distribution
over various factors in the training datasets.
¢ Quantitative Analyses
— Unitary results
— Intersectional results
e Ethical Considerations
e Caveats and Recommendations
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PUBLICATIONS

Reproducibility:
Transparent

Robust



NEW RESEARCH

Conference papers

NeurlPS: Neural Information Processing Systems

ICML: International Conference on Machine Learning

|IJCAI: International Joint Conterence on Artiticial Intelligence
FAccT: Fairness, Accountability, and Transparency

NeurlPS: Machine Learning and the Physical Sciences Workshop



PRACTICAL TIPS FOR TRAINING MODELS

CPS-FR 2022 | MIT



Feature Feature Feature
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NORMALIZATION

ePuts each feature on same scale

e Allows default hyperparamters to be a good

starting point
- learning rate, initialization ot weights, etc.
eOptions depend on data distribution

eStandardization: mean: O stdev: 1
eMin-max: [0,1]



Feature Feature Feature

T
: 5 3 arget

Example
1

Example
2

Example

ENCODING

eNon-numeric data
o(Class-based features:
e One-hot encoding: 2 — [0 1]

e \Vhen classes do not have sequential

meaning: ¥ cars vs dogs vs plants X months



BUILDING AND TRAINING MODELS

TRAINING

*The most challenging part of machine
learning is gaining the experience for tuning

models well.

o\\Ve will work on this skill!



ACTIVITY DESCRIPTION

eSimulating e+p collisions
*Predicting particle-level

invariant mass (regression)

e Advanced: try a
generative model (e.g.

autoencoders)



ACTIVITY DESCRIPTION

m* = E2 — p||?

*Sigmoid activation for
hidden layer and linear for

output (regression model)

eHow many “trainable

parameters” in our model?



COMMUNITY

eFach of you arrived here with your own backgrounds, specialty, and path in
ife

eYour experience and expertise are valuable here, no matter what it is

o|f the activity is within your background, help others!

o|f you are totally (or a little) lost, ask for help!

o[t is our shared goal to have each of us leave with some new skill/

knowledge/understanding



GETTING STARTED

o(Click the link under this tutorial on the workshop page
*|f you have access to a google login, click “open in colab”

eOtherwise, download and open in Deepnote or download onto your

oersonal computer (with appropriate dependencies)



