
D E E P  L E A R N I N G  
F O R  N U C L E A R  P H Y S I C S

M I C H E L L E  K U C H E R A  
D AV I D S O N  C O L L E G E  

E X O T I C  B E A M  S U M M E R  S C H O O L  
F R I B  
1 4  J U LY  2 0 2 3



M I C H E L L E  K U C H E R A  

B . S . ,  M . S .  P H Y S I C S  
M . S . ,  P H . D .  C O M P U TAT I O N A L  S C I E N C E  

PhD: GPUs for Bayesian Neural Networks (😟)



•Computational graphs 
•Gradient-descent optimization 
•Logistic regression 
•Deep neural networks 
•Learning tasks 
•Best practices
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•Each of us learns something today 
•Stop me with any questions
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C O M M U N I T Y

•Each of you arrived here with your own backgrounds, specialty, and path in 

life 

•Your experience and expertise are valuable here, no matter what it is 

•If the activity is within your background, help others! 

•If you are totally (or a little) lost, ask for help! 

•It is our shared goal to have each of us leave with some new skill/

knowledge/understanding
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M A C H I N E  L E A R N I N G :  

L E A R N I N G  F R O M  D ATA



Learning from data is a paradigm shift in 
thinking about predictive models
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C L A S S I F I C AT I O N
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Features Hidden Layer Output

Weight initialization: What happens if we initialize all weights to same value?
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Learning (loss) curves



T R A I N I N G

Remember that our goal is NOT to minimize loss on training data! 

Learning curves
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J = − (y log( ̂y) + (1 − y)log(1 − ̂y))

Cross entropy:
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B E S T  P R A C T I C E S  

L I T E R AT U R E



C H O O S I N G  A N  A R C H I T E C T U R E

H O W  M A N Y  L AY E R S ?   

H O W  M A N Y  N O D E S  P E R  L AY E R ?  

L E A R N I N G  R AT E  

D R O P O U T ?  

W H AT  A C T I VAT I O N  F U N C T I O N ( S ) ?  

H O W  M A N Y  C O N V O L U T I O N  L AY E R S ?  

F I LT E R  S I Z E ?  

S T R I D E ?  

P O O L I N G ?
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M O D E L  C A R D S



M O D E L  C A R D S



P U B L I C AT I O N S

Reproducibility: 

Transparent 

Robust 



N E W  R E S E A R C H

Conference papers 

NeurIPS: Neural Information Processing Systems 

ICML: International Conference on Machine Learning 

IJCAI: International Joint Conference on Artificial Intelligence 

FAccT: Fairness, Accountability, and Transparency 

NeurIPS: Machine Learning and the Physical Sciences Workshop
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D ATA

NORMALIZATION 

•Puts each feature on same scale  

•Allows default hyperparamters to be a good 

starting point 

     - learning rate, initialization of weights, etc. 

•Options depend on data distribution 

•Standardization: mean: 0 stdev: 1 

•Min-max: [0,1]
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D ATA

ENCODING 

•Non-numeric data 

•Class-based features: 

• One-hot encoding: 2  [0 1] 

• When classes do not have sequential 

meaning: ✅ cars vs dogs vs plants ❌ months 

→
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B U I L D I N G  A N D  T R A I N I N G  M O D E L S

TRAINING 

•The most challenging part of machine 

learning is gaining the experience for tuning 

models well. 

•We will work on this skill! 



A C T I V I T Y  D E S C R I P T I O N

•Simulating e+p collisions 

•Predicting particle-level 

invariant mass (regression) 

•Advanced: try a 

generative model (e.g. 

autoencoders)



A C T I V I T Y  D E S C R I P T I O N

•Sigmoid activation for 

hidden layer and linear for 

output (regression model) 

•How many “trainable 

parameters” in our model?

L =
I

∑
i=i

wixi + b

N =
1

1 + e−(∑I
i=1 xiwi+b)

px

py

pz

E

q

m

m2 = E2 − ∥p∥2



C O M M U N I T Y

•Each of you arrived here with your own backgrounds, specialty, and path in 

life 

•Your experience and expertise are valuable here, no matter what it is 

•If the activity is within your background, help others! 

•If you are totally (or a little) lost, ask for help! 

•It is our shared goal to have each of us leave with some new skill/

knowledge/understanding



G E T T I N G  S TA R T E D

•Click the link under this tutorial on the workshop page 

•If you have access to a google login, click “open in colab” 

•Otherwise, download and open in Deepnote or download onto your 

personal computer (with appropriate dependencies)


