

J.H. Kelley (NCSU/TUNL) - USNDP Structure Group Leader

Nuclear Data

- 1. What is it?
- 2. Where do I get it from?
- 3. What is my role?

- Early "large-scale" Nuclear Data Program was strongly correlated with the Manhattan Project.
 - Fission and criticality
 - Neutron cross-sections
 - β-decay energy production
- Description is too narrow
- Nuclear data is the product of nuclear science research.
- Description is perhaps too broad

Nuclear Data Evaluation

- Nuclear structure and decay data
- Experimental facilities and detection techniques
- Nuclear data measurements and analysis
- Nuclear theories, models and data evaluation

🎈 Standards

- Evaluated nuclear data libraries and processing
- Validation, benchmarking of evaluated data
- Integral experiments
- Uncertainty quantification
- Data dissemination and international collaboration
- Fission energy applications
- Accelerator-related applications
- Fusion technology applications
- Dosimetry and shielding applications
- Safeguards and security
- Space, cosmic-ray applications, radiation effects on electronics

1

- Astrophysics and cosmology applications
- Medical and environmental applications

too academic for the applied science community

•••

... too applied for the basic research community

In this talk I will focus on Compilation, Evaluation and Dissemination of nuclear data, and on organizations that perform these activities.

- Today we have several original data libraries for Compiled and Evaluated data. These include:
 - NSR: Nuclear Science Reference Database: how to find original publications
 - ENSDF: Evaluated Nuclear Structure Data File: recommended level parameter data and decay data
 - ENDF: Evaluated Nuclear Data File: Recommended cross section and decay data
- How did we get to the "modern" era?

Precursor to Nuclear Data – "Timeline of chemical element discoveries" (Wikipedia)

• Discovery begins with a simple understanding of data: <u>earth</u>, <u>water</u>, <u>air</u>, <u>fire</u>, and <u>aether</u>.

John Dalton's 1808 book A New System of Chemical Philosophy

NCCentral

UNIVERSITY

NC STATE

UNIVERSITY

Oxford Dictionaries

Compilation: from Latin *compilare (14th cent)*

"the action or process of producing something by assembling information collected from other sources"

in scientific fields it serves as a convenient source of detailed information

Evaluation: from French *évaluation (1842)*

"the making of a judgment about the amount, number, or value of something; assessment"

NC STATE

UNIVERSITY

1

a good "evaluation" always involves "compilation"

courtesy of E. Browne (LBNL)

The Constitution of the Elements.

In continuation of my letter in NATURE of March 4, further experiments on mass-spectra have been made, the results of which may be briefly announced as follows:

Boron (atomic weight 10.9) is a complex element. Its isotopes are 10 and 11, satisfactorily confirmed by second-order lines at 5 and 5.5. Fluorine (atomic weight 19:00) is apparently simple, as its chemical atomic weight would lead one to expect.

The results obtained with silicon (atomic weight 28.3) are somewhat difficult to interpret, and lead to the conclusion that this element has isotopes 28 and 29, with possibly another 30.

Bromine (atomic weight 79.92) is particularly interesting, for, although its chemical atomic weight is so nearly 80, it is actually composed of approximately equal parts of isotopes 79 and 81.

Sulphur (atomic weight 32.06) has a predominant constituent 32. Owing to possible hydrogen compounds the data are as yet insufficient to give a decision as to the presence of small quantities of isotopes of higher mass suggested by the atomic weight.

Phosphorus (atomic weight 31.04) and arsenic (atomic weight 74.96) are also apparently simple elements of masses 31 and 75 respectively.

No line given by the above elements shows any, measurable divergence from the whole number rule. F. W. Aston.

NC STATE

UNIVERSITY

Cavendish Laboratory, June 20.

The Constitution of the Elements.

SINCE my last letter under the above title in NATURE of July 1, experiments have been made with a few more elements. The work has been progressively more and more difficult, for it has not been easy to find volatile compounds suitable for use, and when

found the very objectionable chemical properties of some of them have led to experimental trouble and disappointing results. Thus selenium, tin, antimony, and tellurium have so far yielded no result of any value.

Fortunately, iodine (atomic weight 126-92) gave definite and unmistakable effects. It proves to be a simple element of mass 127-a result satisfactorily confirmed by a single line at 142 corresponding to CH₃I, the vapour used in the experiments. This result has particular interest in view of the recent work of Kohlweiler (Zeit. Phys. Chem., vol. xcv., 1920, p. 95), who deduces five isotopes of iodine, all of even integral atomic weights, and claims to have effected a considerable separation of these by diffusion.

Owing to the kindness of Prof. Collie and Dr. Masson in providing me with a sample of gas rich in xenon, I have been able to identify two more probable isotopes of that element and obtain trustworthy values for the atomic weights of the five already found. The provisional figures given for these turn out to be too low. The values quoted below were obtained from the position of the second-order line 64.5. They should be trustworthy to about one-fifth of a unit.

Additional evidence on argon leads to the conclusion that its isotope 36 need no longer be regarded as doubtful.

The following table gives the results to date :

Minimum number of Masses of isotopes in orde Ele- Atomic Atomic ment number weight isotopes of their intensity 1.008 1.008 Ι Ι He 2 I 3.99 4 10.00 2 11, 10 6 I 12.00 12 14.01 I 14 8 16 10.00 I 9 10.00 I 19 Ne IO 20.50 2 20, 22, (21) Si 28.30 28, 29, (30) 14 2 I 15 31.04 31 16 32.06 I 32 Cl 17 35, 37, (39) 35.40 2 39.88 18 2 40, 36 74.96 As 33 I 75 79, 81 35 79.92 2

Table of Elements and Isotopes.

н

в

C

N

0

F

Р

S

А

Br Kr 36 6 84, 86, 82, 83, 80, 78 82.92 126-92 I 127 53 X 54 130.32 5, (7)129, 132, 131, 134, 136, (128, 130?) Hg 80 200.60 (6)(197-200), 202, 204 (Numbers in brackets are provisional only.) F. W. ASTON.

Cavendish Laboratory, November 30.

Nature, July 1920

NCCentral

UNIVERSITY

THE UNIVERSITY of NORTH CAROLINA at CHAPEL HILL

reviews of MODERN PHYSICS

Nuclear Physics

C. Nuclear Dynamics, Experimental*

M. STANLEY LIVINGSTON AND H. A. BETHE[†] Cornell University, Ithaca, New York

VOLUME 9

JULY, 1937

Number 3

					TABLE LX	XIV. N	iuclear excitation levels.	
				LEVEL				
NUCLEUS	No.	Energy MV	Width kv	Nuclear Mass	Spectr. Symbol	Class	SOURCE	y-RAYS
Li	1	0.44		7.018 65	${}^{2}P_{1/2} u$	A	Li [*] -d-pP	~0.4 Li ^τ -α-α
Be ^s	1	2.9	780	8.011 1		A	$B^{11}-p-\alpha P$, $B^{10}-d-\alpha P$	
	2	~ 4.8	~ 1400	8.013 1	1D2 g	B	Li ⁸ -e ⁻ aP	17.5 MV 4→0
	3	6-12	Large	8.014-20		C	B1º-d-aP, Li ^s -e -aP	10-14 MV 4-+1, 2
	4	17.50	9	8.026 72	1 u	A	$Li^7 - p - \gamma R$	$(\text{from Li}^{7}-p-\gamma)$
	5	17.86	Large	8.027 11			Li ⁷ -p-yR	(from Li ⁷ -p-y)
Be^{10}	1	2.4	Small	10.019 3	¹D g ?	C	Be*-d-pP ?	
B_{10}	1	0.5		10.016 9	Sg?	B	Be ⁹ -d-nP	
	2	2.0	**	10.018 5	D_{g} ?	B		
	3	3.3	**	10.019 8	Dg?	B		1
	4	7.28	Large	10.024 13		B	Be ⁹ -p-yR	(from Be ^s -p-γ)
Bu	1	2.14	Small	11.015 22	D u ?	A	B10-d-pP	
	2	4.43		11.017 68	F n ?	B	aa	

decay energy, half-life/width, production mechanism, decay

THE UNIVERSITY of NORTH CAROLIN at CHAPEL HILL

JANUARY, 1940

REVIEWS OF MODERN PHYSICS

VOLUME 12

A Table of Induced Radioactivities

J. J. LIVINGOOD AND G. T. SEABORG Jefferson Physical Laboratory, Harvard University, Cambridge, Massachusetts, and Departments of Chemistry and Physics, University of California, Berkeley, California

The subsequent editions of Table of Isotopes

G.T. Seaborg, *ibid.* 16, 1 (1944)

G.T. Seaborg, I. Perlman, ibid. 20, 585 (1948)

J. M. Hollander, I. Perlman, and G.T. Seaborg, ibid., 25, 469 (1953)

D. Strominger, J.M. Hollander, G.T. Seaborg, ibid., 30, 585 (1958)

Katherine Way

In 1938 Kay Way earned a PhD in nuclear theory from the University of North Carolina with John Wheeler. Wheeler once noted she nearly stumbled on a theory for fission when she could not resolve the behavior of a high-spin and high-charge liquid drop. Eventually she landed in the Manhattan Project at the Metallurgical Laboratory in Chicago, where she worked on reactor design, evaluation of reactor constants and the organization of radioactivity data on fission products. Theoretical work there with Eugene Wigner led to what became known as the Way-Wigner formula for fission-product decay.

Kay systematized the vast quantities of Manhattan Project results, at first as a hobby and eventually as the work that absorbed her effort for the remainder of her professional career.

In 1945, Kay joined the Clinton Laboratories in Oak Ridge and continued her analysis of fission products and began collecting and organizing data on nuclear decay. Kay also provided the seminal idea for what has become Oak Ridge Associated Universities.

Moving to the National Bureau of Standards (DC) in 1947, she devoted herself full-time to the data evaluation needs of the basic and applied research communities. She coauthored a series of nuclear data sheets that later evolved into the Evaluated Nuclear Structure Data File (ENSDF) and with endorsement of the National Academy of Science she created the Nuclear Data Project in 1953.

In 1964, Kay moved to ORNL and arranged with Academic Press to establish a journal *Nuclear Data (Sheets)* to publish the extensive data that she and her colleagues had prepared, and in 1965 she was instrumental in establishing a second journal, now titled *Atomic Data and Nuclear Data Tables*. Kay persuaded the editors of *Nuclear Physics* to add keywords to the title page of each article, a practice that has evolved into the Nuclear Science Reference File. After retiring from ORNL in 1968, Kay relocated to TUNL where she continued as ADNDT editor until 1982 before retiring in 1988. (Sources: Physics Today)

<mark>obituary/Wikipedia)</mark>

THE UNIVERSITY of NORTH CAROLINA at CHAPEL HILL

Evolution of the USNDP and National Nuclear Data Center

In the early 70's, the NSF and National Academy supported creation of two rounds of NIRA scholarships (71' and 73') that supported 12 post-docs to carry out a prompt update of structure information for Nuclear Data Sheets. Soon after this, the structure and decay data centers formed the US Nuclear Data Program formally connecting NDP/ORNL, Isotopes/LBL, Idaho(Charlie Reich), U Penn(Fay Selove) and BNL(with Sol Pearlstein). Around 1974, the US and international collaborators formed the Nuclear Structure and Decay Data (NSDD) network of evaluators that is coordinated by the IAEA. The network accepted the general policies and procedures developed by Kay Way and followed by the NDP/ORNL. The NSDD developed and took on responsibility to maintain the Evaluated Nuclear Structure Data File (ENSDF).

At Brookhaven, the Neutron Cross Section Compilation Group seeded from the Manhattan Project in 1951; they produced the BNL-325 neutron cross-section evaluations. Around 1960 the group was renamed as the Sigma Center and a new Cross-Section Evaluation Group was formed that worked closely with the Sigma Center. In 1967 the two groups merged and became the National Neutron Cross Section Center, and they began producing the Evaluated Nuclear Data File (ENDF).

In 1977, with the hire of Jag Tuli, BNL took on additional responsibilities involving nuclear structure and decay data evaluation and they became the National Nuclear Data Center. The NNDC began providing access to nuclear data via telnet in 1986, and via WWW in 1994. In the late 1990s, under Charlie Dunford's direction, the scope of the USNDP was broadened to include management of the ENDF.

TUNL joined the NSDD in 1992 following Fay Ajzenberg-Selove's retirement.

THE UNIVERSITY f North Carolina t Chapel Hill

National Nuclear Data Center: the primary ND dissemination center in the US

National Nuclear Data Center: the primary ND dissemination center in the US

Nuclear Science References (NSR) NSR Reference Paper NIM A 640, 213 (2011) Database version of June 21, 2023

The NSR database is a bibliography of nuclear physics articles, indexed according to content and spanning more than 100 years of research. Over 80 journals are checked on a regular basis for articles to be included. For more information, see the help page. The NSR database schema and Web applications have undergone some recent changes. This is a revised version of the NSR Web Interface.

Quick Search Text Search Indexed Search Keynumber Search Combine View Recent References
Author
Brown or B.A.Brown
Nuclide
31Na or ca-38
Reaction
n,g or (n,g) or (160,160)
Publication Year from 1857 C to 2023 C
Reference Type OAll OExperiment OTheory
Output Format OHTML OBibTex OText
Search Reset

Nuclear Science Reference database (NSR)

(r А

Ν

S

	Quick Search Text Sea	arch Indexed Search Combine View Recent References	
	Initialization Parameters		
one) Ithor FirstAuthor	Publication year range: 1857 Primary only: View All: Output year order: OAscend Output format: OHTML OBi OSearch all entries OSearch	to 2023 ℃ Require measured quantity: ✓ Not in EXFOR: □ ting ODescending bTex OText OKeynum OExchange ch entries added since 6 ✓ / 22 ✓ / 2023 ✓ (month/day/year)	
uclide Target	Search Parameters Nuclide V 100Sn AND	2019PA16 Phys.Rev. C 99, 034313 (2019)	
Parent Daughter	- Target V 9Be AND - Measured V B+-DECAY	J.Park, R.Krucken, D.Lubos, R.Gernhauser, M.Lewitowicz, S.Nishimura, D.S.Ahn, H.Baba, B.Blank, A.Blazhev, P.Boutachkov, F.Browne, I.Celikovic, G.de F P.Doornenbal, T.Faestermann, Y.Fang, N.Fukuda, J.Giovinazzo, N.Goel, M.Gorska, H.Grawe, S.Ilieva, N.Inabe, T.Isobe, A.Jungclaus, D.Kameda, G.D.Kim, I.Kojouharov, T.Kubo, N.Kurz, Y.K.Kwon, G.Lorusso, K.Moschner, D.Murai, I.Nishizuka, Z.Patel, M.M.Rajabali, S.Rice, H.Sakurai, H.Schaffner, Y.Shimizu, L PA.Soderstrom, K.Steiger, T.Sumikama, H.Suzuki, H.Takeda, Z.Wang, H.Watanabe, J.Wu, Z.Y.Xu	rance, YK.Kim, Sinclair,
Measured Deduced	Search Reset	New and comprehensive β - and β p-decay spectroscopy results in the vicinity of ¹⁰⁰ Sn	
Calculated 7 eaction Incident Outgoing	The value of the NSR is from the effort to produce usable	RADIOACTIVITY 87,88,88m Tc, 88,89,91,91m Ru, 90,90m,91,91m,92,92m Rh, 92,93,94,95,95m Pd, 94,94m,95,96,96m Ag, 96,96m,97,97m,98,99 Cd, 98,98m,99,100,101 In 101 Sn(β^+), (β^+ p)[from 9 Be(124 Xe, X), E=345 MeV/nucleon]; measured E γ , I γ , $\gamma\gamma$ - and $\beta\gamma$ -coin, β^+ p spectra, half-lives of ground states and isomers f decay $\beta\gamma$ -coin, and β p decay curves, Q(β^+), and $\%b^+$ p branching ratios using the WAS3ABi double-sided silicon strip detector array for β^+ detection a Euroball-RIKEN Cluster Array for γ detection at RIKEN Nishina Center. 88 Mo, 88,89,91 Tc, 90,91,92 Ru, 92,93,94 Rh, 95,96 Pd, 96,97 Ag, 98 Cd; deduced levels, multipolarities, β feedings and logft. Comparison with Serduke-Lawson-Gloeckner empirical shell model in proton and neutron $p_{1/2}$ and $g_{9/2}$ model space 100 Sn core.	, rom β and the J , π, a below
ournal po opic (range) (range)	keywords	NUCLEAR REACTIONS ⁹ Be(¹²⁴ Xe, X) ⁸⁷ Ru/ ⁸⁸ Ru/ ⁸⁹ Ru/ ⁹⁰ Ru/ ⁹¹ Ru/ ⁹² Ru/ ⁹³ Ru/ ⁹⁰ Rh/ ⁹¹ Rh/ ⁹² Rh/ ⁹³ Rh/ ⁹⁴ Rh/ ⁹⁵ Rh/ ⁹¹ Pd/ ⁹² Pd/ ⁹³ Pd/ ⁹⁴ Pd/ ⁹⁵ Pd/ ⁹⁶ Pd/ ⁹⁵ Pd/ ⁹⁶ Pd/ ⁹⁷ Pd/ ⁹³ Ag/ ⁹ / ⁹⁵ Ag/ ⁹⁶ Ag/ ⁹⁷ Ag/ ⁹⁸ Ag/ ⁹⁵ Cd/ ⁹⁶ Cd/ ⁹⁷ Cd/ ⁹⁸ Cd/ ⁹⁹ Cd/ ⁹⁷ In/ ⁹⁸ In/ ⁹⁹ In/ ¹⁰⁰ In/ ⁹⁹ Sn/ ¹⁰⁰ Sn/ ¹⁰¹ Sn, E=345 MeV/nucleon; measured yields, particle identification using BigRIPS and the ZeroDegree spectrometers, Bp-TOF-ΔE technique with position-sensitive parallel-plate avalanche counters, plastic scintillators a filled ionization chamber at RIBF-RIKEN facility.	⁴ Ag 1 plot and gas-
Duke		INC STATE Image: The University INIVERSITY Image: The University INIVERSITY Image: The University Image: The University Image: The University Ima	16

TUNL

Learn More

NUCLEAR INSTRUMENTS & METHODS

PHYSICS

Nuclear Instruments and Methods in Physics Research A 640 (2011) 213-218

Nuclear Instruments and Methods in Physics Research A

Contents lists available at ScienceDirect

journal homepage: www.elsevier.com/locate/nima

The Nuclear Science References (NSR) database and Web Retrieval System

B. Pritychenko^{a,*}, E. Běták^b, M.A. Kellett^c, B. Singh^d, J. Totans^a

^a National Nuclear Data Center, Brookhaven National Laboratory, Upton, NY 11973-5000, USA

^b Institute of Physics, Slovak Academy of Sciences, 84511 Bratislava, Slovakia

^c Nuclear Data Section, International Atomic Energy Agency, Vienna International Centre, P.O. Box 100, A-1400 Vienna, Austria

^d Department of Physics & Astronomy, McMaster University, Hamilton, Ontario, Canada L8S 4M1

ARTICLE INFO

Article history: Received 10 February 2011 Received in revised form 10 March 2011 Accepted 11 March 2011 Available online 21 March 2011

Keywords: Nuclear databases Bibliography Semantic analysis Nuclear structure Reaction data Decay data

ABSTRACT

The Nuclear Science References (NSR) database together with its associated Web interface is the world's only comprehensive source of easily accessible low- and intermediate-energy nuclear physics bibliographic information for more than 200,000 articles since the beginning of nuclear science. The weekly updated NSR database provides essential support for nuclear data evaluation, compilation and research activities. The principles of the database and Web application development and maintenance are described. Examples of nuclear structure, reaction and decay applications are specifically included.

The complete NSR database is freely available at the websites of the National Nuclear Data Center http://www.nndc.bnl.gov/nsr and the International Atomic Energy Agency http://www-nds.iaea.org/nsr. Published by Elsevier B.V.

THE UNIVERSITY of NORTH CAROLINA at CHAPEL HILL

Nuclear Structure Databases

Evaluated Nuclear Structure Data File

Compiled NS Data eXperimental UNevaluated Nuclear Data Library

Derivative Library Databases/GUI that presents ENSDF data in a different format

Evaluated Nuclear Structure Data File (ENSDF)

UNIVERSITY

Kay Way worked on evaluation of reactor constants and the organization of radioactivity data on fission products. She systematized the vast quantities of Manhattan Project results, at first as a hobby and eventually as the work that absorbed her effort for the remainder of her professional career; she coauthored a series of nuclear data sheets that later evolved into the Evaluated Nuclear Structure Data File (ENSDF) and with endorsement of the National Academy of Science she created the Nuclear Data Project

ın 1953.	NUCLEAR DATA CUMULATED INDEX TO A-CHAINS	
A = 182	A Journal Devoted to Compilations and Evaluations A Suclei Reference Date A Suclei	<u>ice Date</u> .57 1978 .81 1979 .193 1978 .675 1978 .117 1979 .867 1979 .267 1976 .457 1979 .243 1971b .243 1977b
Hf, Ta, W, Re, Os, Ir, Pt	$ \begin{array}{c} \text{folume A1} \\ \text{No. 1} \\ \text{Two-Proton and Two-Neutron Binding-Energy Systematics and Alpha-Decay Energies} \\ \text{No. 1} \\ \text{No. 1} \\ \text{No. 1} \\ \text{Nuclear Transition Probability, } B(E2) \text{ for } 0^+ \rightarrow 2^+ \text{Transitions and Deformation} \\ \text{Parameter, } \\ \begin{array}{c} 1 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\$	735 1981 307 1978 637 1979 619 1979 437 1977 207 1977 329 1976 839 1976 839 1977 341 1976 467 1977 341 1976 681 1979 479 1977
Compiled by K. Way, December 1965 Replacement for pages $60-1-125$ through $60-1-141$ and $6-2,3-284$ through $6-2,3-286$ of Nuclear Data Sheets	No. 2 Experimental Excitation Functions for (n,p), (n,t), (n,a), (n,2n), (n,np), and (n,na) Reactions Zest Walk SP 4310.181 SP 4	351 1976 .701 1979 .119 1977 .275 1977 .367 1976 .263 1976 .385 1983 .1 1983
Level schemes, compilers' analysis sheets, and data sheets follow immediately. References, explanations of conventions, symbols, and abbreviations are at the back of this issue.	F. McGowan, W. T. Milner, H. J. Kim 35 c1 \$\$ \$431.0.37 1075 100 167	289 1976 ,223 1983 ,35 1983 ,402 1982 ,71 1978b ,277 1983 ,218 1977f ,123 1978b ,615 1977f ,79 1981 ,619 1981
Policies and bases for spin-parity assignments are described in the front of the first issue of each volume.	Volume B1 Nuclear Data Sheets -1978 5 -1978 5 -1978 5 107 11	,119 1981 ,92 1981 ,161 1981 ,119 1981 ,8 1981 ,134 1981 ,35 1981
Explanation of report identifications (BNL, ISC, etc.) and a list of USAEC Depository Libraries in countries outside the USA through which reports may be obtained are given with the reference section of the first issue of each volume. References to reports are not used if a journal reference is available. Please refer to a specific Nuclear Data Sheet by using the number at the bottom of the specific following runn. Nuclear Data Pl + 60 (1066)	No. 2 $A = 186, 187, 188, 189$ No. 3 Recent References Future Nos. $A = 213 - , A = -83, A = 140 - 148$ $-\frac{1140 - 148}{-140}$	158 1981 ,58 1981 ,71 1981 ,70 1981 ,81 1981 ,194 1981 ,194 1981 ,199 1981 ,91 1981 ,202 1981
ot the page in the following way: Nuclear Data D1-1-09 (1900).	Published by Academic Press Inc. 111 Fifth Avenue, New York, N.Y. 10003 The cusulated index gives, for each assay value A, the nost recent evaluation of exprimental information on levels of nuclei value.	
	iection A: Volume 1, 1965–1966 (6 issues): \$15.00 Single Issues: \$3.00 iection B: Volume 1, 1966 (6 issues): \$15.00 Single Issues: \$3.00 Suclear Data Sheets (1958–1965): Complete Set (10 issues): \$55.00 Single Issues: \$6.50 Data The seta-stable except of this A-chain REFERENCE WF - Neeleer Data Sheets, vol.5, p.125 SHE data Sheets (1958–1965): Complete Set (10 issues): \$55.00 Single Issues: \$6.50 Data The seta stable except of this A-chain	
81-1-1	Subscription orders should be sent to the office of the Publishers Copyright © 1966, Academic Press Inc. t Uspublished partial evaluations for A = 1-4 are included in BEEP	
	JIVEDSITY	

ENSDF interface

NCCentral

UNIVERSITY

II N I

NC STATE

UNIVERSITY

Jate Jate Jate Jate Type Auto Catain Jate Jate Colspan="2">Colspan="2">Catain Jate J	g ₁₂ -1			Fro	m ENSE	OF - Evalu	ated March	2022				²⁴ ₁₂ Mg ₁₂ -1
TypeAutoDistrictDistrictDistrictDistrictDistrict1TypeAutowarcha Bauenia, Angha ChakraboDistrictDistrictJaharabaz22333333223333333223333333332333					Add	opted Leve	els, Gamma	5				
$\frac{2^{4}Mg \ Levels}{p^{2}}$ $Even Prove (XREF) Figs$ $\int_{a}^{a} \frac{2^{4}M_{0} \int_{a}^{b} decay (14956 h)}{(14956 h)} \qquad (12) \frac{2^{3}M_{0}(a_{2})^{2}Rec/hea}{p^{2}M_{0}(a_{2})^{2}M_{0}(a_{2})^{2}Rec/hea} \qquad (0herr) \\ (12) \frac{2^{4}M_{1} \int_{a}^{b} decay (12057 ms)}{p^{2}M_{0} decay (1507 ms)} \qquad (12) \frac{2^{3}M_{0}(a_{1})^{2}(1,1)}{p^{2}M_{0}(h_{2})^{2}(1,1)} \qquad (Mag^{2}M_{0})^{2}(1,1) \\ (12) \frac{2^{4}M_{1} \int_{a}^{b} decay (1307 ms)}{p^{2}M_{0} decay (1207 ms)} \qquad (12) \frac{2^{3}M_{0}(h_{2})^{2}(1,1)}{p^{2}M_{0}(h_{2})^{2}(h_{2})} \qquad (12) \frac{2^{4}M_{0}(h_{2})^{2}(h_{2})}{p^{2}M_{0} decay (1207 ms)} \qquad (12) \frac{2^{3}M_{0}(h_{2})^{2}(h_{2})}{p^{2}M_{0} decay (12) p^{2}} \qquad (12) \frac{2^{3}M_{0}(h_{2})^{2}(h_{2})}{p^{2}M_{0}(h_{2})^{2}} \qquad (12) \frac{2^{3}M_{0}(h_{2})^{2}(h_{2})^{$	⁻)=-138 ⁽⁾ =29676 ⁽⁾ =reactic ⁽⁾ Be18, 2 ⁽⁾ Fr14: ⁽¹⁾ ⁽⁾ e sonano ⁽⁾ Di12: ¹ ⁽⁾ sospin p ⁽⁾ Va20: ²	Type Full Evalue 84.77 23; S(5.23 16, S(2) 004Be08: ¹² ² C(¹³ C,n) E- e energies al ¹ B(¹³ N,X), (purity/mixing ⁸ Si(p,p' X) ²⁴	$\begin{array}{c} & \\ \text{uation} & \\ \text{(n)} = 16531\\ \text{(p)} = 20486.8\\ \text{(2)} = 12, 13.5, 2\\ \text{(13}, 12.5, \text{Me})\\ (1$	L. Shamsuzzoha Ba 22 3; S(p)=11692.0 05 22 (2021Wa16) 20, E=130 MeV; n 20 MeV; measured E=29.5, 45 MeV. M t excitation energy leV; measured Ey;	Author sunia, A 59 1; Q(d measured reaction eV 20. Measured ~47 Me deduced	Hist nagha Cha α)=-9316 d Ey, (part products l particle s V, GDR y d σ .	ory 4kraborty 56 1 202 ticle)y-coin. ²⁵ Mg: dedux pectra, fusic -emission fe	Citati NDS 186, 1 21Wa16 ced ²⁴ Mg c on <i>σ</i> . Dedu eatures.	ion 2 (2022 excited aced ²⁴ 1	2) states Mg 6–	iterature Cutof 31-Mar-202 and reported α decay featur	r <u>Date</u> 22
$\frac{1}{12} \frac{2^{4}Na \beta^{-} decay (14.956 h)}{2^{4}Al e decay (2.053 s)} = \frac{1}{2^{3}Ne(a,a)(a,a');Resonances} = \frac{AA}{A} = Coulomb excitation = \frac{2^{4}Al e decay (2.053 s)}{2^{3}Ne(a,a)(a,a');Resonances} = AA = Coulomb excitation = \frac{2^{4}Al g (a decay (13.07 ms)}{2^{3}Ne(a,a)(a,a');Resonances} = AA = Coulomb excitation = \frac{2^{4}Ma (g (a^{+})_{1})}{2^{3}Ne (2,1,0)} = \frac{2^{3}Ne(a,a)(a,a');Resonances}{A} = A = Coulomb excitation = \frac{2^{4}Ma (g (a^{+})_{1})}{2^{3}Ne (2,1,0)} = \frac{2^{3}Ne(a,a)(a,a');Resonances}{A} = A = Coulomb excitation = \frac{2^{4}Ma (g (a^{+})_{1})}{2^{3}Ne (2,1,0)} = \frac{2^{3}Ne(a,a)(a,a');Resonances}{2^{3}Ne (2,1,0)} = A = \frac{2^{3}Ma (g (a^{+})_{1})}{A} = \frac{2^{3}Ma (g (a^{+})_{1})} = \frac{2^{3}Ne(a,a)(a,a');Resonances}{2^{3}Na (^{3}Bc,a)} = \frac{2^{3}Ne(a,a')}{A} = \frac{2^{3}Ma (g (a^{+})_{1})}{A} = \frac{2^{3}Ma (g (a^{+})_{1})}{A} = \frac{2^{3}Ma (g (a^{+})_{1})} = \frac{2^{3}Ma (g (a^{+})_{1})}{A} = \frac{2^{3}Ma (g (a^{+}$						24 Mg I	Levels					
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $		A B C D E F G H I J K L M	24 _{Na} β ⁻ 24 _{Na} β ⁻ 24 _{Al} ε dc ²⁵ Si εp d 25Si εp d 25p εα d 12C(12C, 12C(12C, 12C(14N, 12C(24M, 12C(24M,	decay (14.956 h) decay (20.18 m) ccay (2.053 s) ccay (130.7 ms) decay decay ecay γ) p):Resonances d) $g_{1}^{12}(2\gamma)$ $a)_{1}^{16}(0,a\gamma)$ $g_{2}^{12}(2\gamma)_{1}^{20}Ne_{2}^{12}(2\gamma)$	N O P Q R S T U V W X Y Z	²⁰ Ne(<i>a</i> ; ²⁰ Ne(<i>a</i> ; ²⁰ Ne(⁶ L ²² Ne(³ F ²³ Na(³ F ²⁴ Mg(<i>y</i> ; ²⁴ Mg(<i>x</i> ; ²⁴ Mg(<i>x</i> ; ²⁴ Mg(<i>n</i> ; ²⁴ M	y):Resonance α),(α , α'):Re: i,i,d),(⁷ Li,t) le,n) y),(p,p'),(p,X) le,d),(³ He,d); γ') e') + $\pi^{+\prime}$),($\pi^{-}\pi$, p'),(pol p,p' $n'\gamma$) He, ³ He') α')	es sonances (), y) (),	Other AA AB AC AD AE AF AG AH AI AJ	s: Coul 24 Mg 24 Mg 25 Mg 25 Mg 27 Al 27 Al 27 Al 28 Si(28 Si(comb excitation $g(\alpha, \alpha' \gamma)$ $g({}^{6}Li, {}^{6}Li')$ $g({}^{16}O, {}^{16}O')$ $g({}^{3}He, {}^{4}He)$ $(\mu^{-}, \nu 3n\gamma)$ (p, α) $d, {}^{6}Li)$ ${}^{28}Si, X\gamma)$	
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	(level)	r »t	Γ _{1/2} or Γ ΄	XR	EF				C	omme	ents	
	0 ^p	0 ⁺ si	table 1.36 ps <i>3</i>	ABCDEFGH JKL	N PQRST	UVIKYZ	XREF: Ot $\delta < t^2 > (^{26}M)$ (2012Yo) $< t^2 > V/2^{24}/4^{2}/4^{$	hers: AA, Al Ig. ²⁴ Mg)=-01). Mg)=3.057 n), Others: 01), 3.030 hers: AA, Al (2015Kuf Ku05) ²⁴ Mg(p,p' From r=1. of (x,y): 1 10), 2.09 p 02); (c,c'): 10), 1.9 ps .76 ps 21(971Sw07), 979Fe05), 104), 20.2 p 03), 1.65 p	B, AD, 1 +0.140 10 16 (c : 3.057) B, AC, 1 96 ps 5 2.25 ps 1.82 ps 3.05)). E2 tt 996 ps 5 2.25 ps 1.82 ps 2.25 ps 1.92 ps 1.9	AE, AF, fm ² 5 charge 0 fm 7 (19711) AD, AE 0 0 ⁺ . 5: weig 975Hc 2 (19 975Hc 2 (19) (19) (19) (19) (19) (19) (19) (19)	AG, AH, AT, A (stat) 25 (syst radius) (2013) 7 (stat) 48 (sys Li26 - (e,e [*])), AF, AG, AH, A 974Fo11), 2.11 05), 2.07 ps 3 556He33), 1.87 1965k01); Co 9775c36), 2.00 (01), 1.93 ps 1. 11); (p,y): 1.9 [*]	J) An02 t) I, AJ of mean ps 16 4 ps 5 1974J010); Cal4), 192 ul Ex: 1.91 ps 14 3 7 ps 16

THE UNIVERSITY

at CHAPEL HILL

of NORTH CAROLINA

Compiled and evaluated structure and decay data from various reactions

TUN

ENSDF: building the database from observations

y(24Mg) (continued)

L_†& E:(level) 24Al ε decay (2.053 s) 1981Wa07,1979Ho08 2381.0 3 0.037 10 7616.42 2428.97 15 0.774 18 8439.29 Decay Scheme Legend *2566.96 20 0.065.7 Intensities: Lyper 100 parent decays 2577.4^a 8 0.030 12 7812.0 $_{y} < 2\% \times I_{z}^{max}$ ×2630‡ 47 3 $I_y < 10\% \times I_y^{max}$ ²⁴Al ε decay (2.053 s) 1981Wa07,1979Ho08 (continued) 2754.030 14 40.6 16 4122.867 ²⁴Al ɛ decay (2.053 s) 1981Wa07,1979Ho08 $l_y > 10\% \times l_y^{max}$ ---- ý Decay (Uncertain) ε, β^+ radiations History Author Citation Literature Cutoff Date 2869.50 6 1.104 4238.35 18+# Leff $I(\varepsilon + \beta^+)^{\dagger \#}$ E(decay) E(level) Log ft Comments hamsuzzoha Basunia, Anagha Chakraborty NDS 186, 2 (2022) 31-Mar-2022 (910 3) 12975 2×10-5 1 5.27 22 2×10^{-5‡}1 eK=0.9151; eL=0.07978; €M+=0.005140 s 4; Q(ε)=13884.77 23; %ε+%β+ decay=100.0 8439.29 3203.88 8 3.08 7 7.5×10^{-4‡} 20 (1723 3) 12162 0.0006918 6.2×10⁻⁵ 17 5.34 12 av E\u03c6=282.5 16; \u03c6K=0.0755 13; 3378.3 8 0.043 7 7616.42 eL=0.00657 11; eM+=0.000423 7 1.0×10^{-3‡} 3 6.9×10⁻⁵ 21 5.31 13 (1765.8 10) 12119.0 0.0009.3 av Eß=301.2 11; eK=0.0632 7; 1971To12, 1972De28, 1979Sh11, 1985Ad10, 1994Ba54. 3493.3 0.04 1 7616.42 eL=0.00550 6; eM+=0.000354 4 sured Ey, Iy, yy-coin; deduced log ft, β + branching. Deduced excited levels, y-branching $I(\varepsilon + \beta^+)$: Other: 0.0004 *1* from % α in 1969St14 (p,n). Ge(Li), Si(Au) detectors. Measured: Ey, Iy, Iβ, Iα. A total of 0.035% 6 α branching 9516.18 3505.61.9 1.98.6 (1833.5.6) 12051.3 0.00010 3 5.8×10⁻⁶ 16 6.42 12 1.1×10^{-4‡} 3 av E\$\beta=330.0 10; \$\varepsilon K=0.0485 5; s been reported. 3866.14 10 5.20 22 5235.16 3+ 4+ EL=0.00423 4; EM+=0.0002723 2 wedge-gap magnetic spectrometer, and four Si detectors. (4⁺) (2186.6 10) 11698.2 0.026 6 0.00046 11 4.67 10 0.0267 6 av EB=483.8 12; EK=0.01608 11; anching. A total of 0.0077% 10 a branching intensity for three levels above 11000 keV has eL=0.001400 10; eM+=9.02×10-5 e barrier detectors. 4200.54 13 4.02 22 8439.29 p,n). Si(Au) detector. Measured β -delayed E α , I α I($\varepsilon + \beta^+$): Other: 0.0049 9 from % α in β feeding from γ -ray intensity balance. Ge(Li) detector 1969St14 (4+) ing, β branching. Ge(Li), a counter telescope of two plastic scintillators. (2570.4 15) 11314.4 0.027 6 0.00020 4 5.18 10 0.027 6 av E\beta=656.9 13; EK=0.00674 4; 4237.96 6 3.61 21 4238.35 ²⁴Mg (enrichment 99.9%, 0.7 mm thick) target, with proton beam, E=18 MeV. Ge(Li) EL=0.000587 4; EM+=3.781×10-5 $\epsilon + \beta$ + feeding to the excited states in ²⁴Mg. Also 1983Ho05. 21 spectra, half-life; deduced delayed proton branching ratio. Gas-AE, Si-E triple telescopes. 4.4×10⁻⁵ 12 5.86 12 av EB=701.6 11: eK=0.005600 24: (2668.1.3)11216.69 0.0072 20 0.0072 20 4280.62 13 0.664 9516.18 $(4^{-},5^{+})$ 4316.00 12 13.3 6 8439.29 eL=0.0004874 2; eM+=3.140×10-5 ²⁴Mg Levels 14 $I(\varepsilon + \beta^+)$: Other: 0.0024 4 from % α in 6010.34 4641.19.9 3.42.25 1969St14 Comments (3064.0 5) 10820.8 0.11 2 0.00035 6 5.08 8 0.11 2 av E\beta=884.8 11; eK=0.002920 10; EL=0.0002541 9; EM+=1.637×10-5 5060.7 8 0.036 13 9301.08 (3308.83 24) 10575.94 0.67 2 0.0015 4.512 14 0.67 2 av EB=999.6 11; EK=0.002078 7; 5177.51 20 0.98 10 9301.08 eL=0.0001808 6; eM+=1.165×10-5 5340.3 4 0.115 13 10575.94 5392.68 9 9516.18 17.3 19 av E\beta=1504.9 11; EK=0.0006665 1; (4368.59 24) 9516.18 35.4 20 0.0258 15 3.525 25 35.4 20 eL=5.799×10⁻⁵ 12: . €M+=3.735×10⁻⁶ 8 2.29 15 av E\beta=1608.7 12; EK=0.0005538 1; (4583.69 25) 9301.08 2.29 15 0.00139.9 4.84 3 *ε*L=4.818×10^{−5} 10; EM+=3.104×10⁻⁶ 6 E(level): From Adopted Levels. (5445.48 24) 8439.29 49.5 15 0.0157 5 3.930 14 49.5 15 av E\beta=2027.1 12; EK=0.0002910 5; εL=2.532×10⁻⁵ 4; €M+=1.631×10⁻⁶ 3 (6072.8 7) 7812.0 0.014 13 7.74 0.014 13 av EB=2333.8 12 E(level): Others: 11220 5 (1979Ho08), 11190 20 (1971To12), 11230 40 (1969St14). 6.43 11 (7874.43 24) 6010.34 1.2.3 1.2.3 av EB=3221.2 12 (8649.61 24) 5235.16 1.37 24 6.598 1.37 24 av Eß=3603.6 12 E(level): Others: 11693 5 (1979Ho08), 11680 20 (1971To12), 11700 30 (1969St14). (9761.90.23) 4122.867 6.05 15 03 av Eß=4154.7 12 03 E(level): Others: 12051 10 (1979Ho08), 12040 40 (1971To12), ²⁴₁₂Mg₁₂ E(level): Others: 12119 10 (1979Ho08), 12120 30 (1971To12), 12130 30 (1969St14), [†] From γ-ray intensity balance at each level, except where otherwise noted E(level): Others: 12158 10 (1979Ho08), 11150 30 (1971To12). [‡] From measured %α branching in 1979Ho08. E(level): Other: 12963 15 (1979Ho08). # Absolute intensity per 100 decays. @ Existence of this branch is questionable. ray energies. 3493.3y from 7616, 087.7y from 9457.81, and 8146.0y from 9516 keV level, differences with recoil corrections. The calculated Ey was not considered in the least-squares

[‡] From Adopted Levels.

INIVEDSIT

THE UNIVERSITY of NORTH CAROLINA at CHAPEL HILL

Contents: Evaluated nuclear structure and decay data for all known nuclei, organized in over 290 mass chains

NSDD analysis and utility codes: https://www-nds.iaea.org/public/ensdf_pgm/index.htm TUNL

$\leftarrow \rightarrow C$	D A https://www-nds.iaea.org/nsdd/	ල ± දු ≡
🌣 Most Visited 🥑	Getting Started 🕀 Asksam2.com 🕀 Free Hotmail 🌀 Google 🦞 Suggested Sites 🔻 TUNL Nuclear Data Pr 🕀 Web Slice Gallery 🕀 Yahoo! Mail	»
	Atomic Energy Agency ear Data Services 24 - prior Agency Heix MAFAT3 DE VINDL NUDAT NOR NUCLAR Wallow Code Nuclear Data Shoets EXECR	India China Russia 🔨
Scientific Secretary Scientific Secretary Paraskevi (Vivian) Dimitriou (1424) & Members Dave Brown (BNL)	INTERNATIONAL NETWORK OF NUCLEAR STRUCTURE AND DECAY DATA EVALUATORS (NSDD)	NSDD Network About Status of NSDD network Status of NSDD network entific detail institutes and contacts
Elizabeth McCutchan (BNL) Filip Kondev (ANL) Jun Chen (FRIB/MSU) Lee Bernstein (LBNL) Michael Smith (ORNL) Ninel Nica (Texas A&M) John Kelley (TUNL) Tibor Kibedi (ANU) Stefan Lalkovski	Logft review article A new review article on the systematics of logft values has been published: Atomic Data and Nuclear Data Tables Volume 152, July 2023, 101584. It is an update of the 1998 publication by Singh et al., Nucl. Data Sheets, 84 (3) (1998), pp. 487-563.	Evaluation Tools Online Webtools (V. Zerkin) Revised Guidelines for Evaluators, 2021 Guidelines for ENSDF half-life evaluations ENSDF, Manual ENSDF, Procedures Specialized Workshop for NSDF, Evaluators
(Univ. Sofia) Balraj Singh (McMaster) Ge Zhigang (CNDC) Dong Yang (Univ. Jilin) Janos Timar (ATOMKI)	24th Technical Meeting of the NSDD network: 24-28 October 2022, Canberra, Australia The 24th meeting of the NSDD network is being hosted by the Australian National University in Canberra, Australia, from 24 to 28 October 2022. Representatives of the data centers and a filiated evaluators will gather to discuss the current status of mass chain evaluations, evaluation responsibilities, and analysis and checking code needs, as well as ENSDF formats and policies. Priority activities for the subsequent two years will also be agreed.	ENSDF Codes ENSDF Codes
Gopal Mukherjee (VECC) Hideki Iimura (JAEA) Alexandru Negret (IFIN-HH)	The meeting is hosted by the Australian National University (Tibor Kibedi, Andrew Stuchbery). It is an in-person meeting with a virtual component. More information is available on the meeting website.	* Workshops on NSDD: Theory and Evaluation IAEA-ICTP 2022 IAEA-ICTP 2018
Ivan Mitropolsky (PNPI)	The 10th in a row Joint ICTP-IAEA NSDD workshop is being held on 3-14 October 2022, at Miramare, Trieste. More information about the workshop programme and lecturers is available on the workshop website.	IAEA-ICTP 2016 IAEA-ICTP 2014 IAEA-ICTP 2012 IAEA-ICTP 2010 IAEA-ICTP 2008
Basunia Caroline D. Nesaraja Alexander Rodionov Zsoltan Elekes Huang Xiaolong	NSDD Spring meeting: ENSDF Evaluations, Policies and Procedures, Codes and Dissemination Tools A preparatory meeting for the upcoming 24th Technical Meeting of the NSDD network was held on 4-7 April 2022. The purpose was to discuss policy proposals, evaluation issues, codes and dissemination tools in view of taking final decisions at the 24th Technical Meeting in October 2022.	IAEA-ICTP 2006 IAEA-ICTP 2005 Workshop 2003-part 2 Workshop 2003-part 1
Duke	The meeting (virtual) was attended by 50 participants, members of the network and collaborating evaluators, from 13 Member States.	

UNIVERSITY

International Atomic Energy Agency: Nuclear Structure and Decay Data Network

THE UNIVERSITY of NORTH CAROLINA at CHAPEL HILL

ENSDF is world unique: aims to provide evaluated data for all nuclei

ENSDF – the core database – cont.

ENSDF is the only Nuclear Structure database that is updated continuously – contains information for <u>ALL</u> nuclei and <u>ALL</u> nuclear level properties & radiations – currently contributed by members of the <u>Nuclear Structure</u> and <u>Decay Data Network</u>, under auspices of IAEA. It is maintained by <u>NNDC</u> and the NSDD role is indispensible! No viable alternative exists in the world!

Nuclear Structure Databases

eXperimental Unevaluated Nuclear Data Library

In the late 1990-2000's the high-spin physics community needed ND support via availability of new data in an accessible format.

The XUNDL database was created to meet this need.

Initial focus was on high-spin and superdeformed data. Level and gamma-ray data was compiled into the ENSDF format with little evaluation of review.

Gave researchers quick access to data that could be imported into other utility files.

Ability to understand evolution of bands/band structures without delay of full evaluation.

Earliest files I could find are 1994Fr11, 1995Ju09

4

THE UNIVERSITY of NORTH CAROLIN. at CHAPEL HILL

eXperimen

UNIV

FPSITV

¹²⁴Sn(¹³C,5nγ):XUNDL-1 1995Ju09,1996Ko16,1996Da02

eXperimental Unevaluated Nuclear Data Library

NC STATE

UNIVERSITY

TUNL

In the late 2000s, as the first generation of ENSDF evaluators began to retire, it became clear that currency was an issue for ENSDF.

Often mentioned a 5-7 year turn-around time between A-chain evaluations. Never met that goal.

Around 2008 XUNDL was expanded to cover all nuclear structure, with the aim of providing reasonably concise and up-to-date information to users.

But it is no substitute for ENSDF evaluated data.

THE UNIVERSITY of NORTH CAROLINA at CHAPEL HILL

Nuclear Structure Databases: Derived from ENSDF

National Nuclear Data Center: the primary ND dissemination center in the US

 At Brookhaven, the Neutron Cross Section Compilation Group seeded from the Manhattan Project in 1951; they produced the BNL-325 neutron cross-section evaluations. Around 1960 the group was renamed as the Sigma Center and a new Cross-Section Evaluation Group was formed that worked closely with the Sigma Center. In 1967 the two groups merged and became the National Neutron Cross Section Center, and they began producing the Evaluated Nuclear Data File (ENDF).

THE UNIVERSITY of NORTH CAROLINA at CHAPEL HILL

ENDF Interface @NNDC

The ENDF Project About ENDF Evaluated Nucle	PROGRAM INTER VERSION 8.08
Image: #3315 Expression: Request #3315 Expression: Ploting options: Quick plot (cross-sections only: o) Imitersal plot (or±Δa, da/d2, d/d2, d²d/d2/d2) beta version Image: Sorted by:	<pre>Selected Integrations of EMD File 3 and File 10 Cross Sections Thermal energy : Eth= 2.53000E-02 (eV) Etero cross section : Sig(2200) Sig(Etero) Etero energy (input) : E0 = 2.53000E-02 (eV) Haxwellian average : Avg-Sign = (2/car(P(P))) Trtg[E1:E2] Sig(E) Phi_m(E) dE / Intg[E1:E2] Phi_m(E) dE Maxwellian average : Avg-Sign = (2/car(P(P))) Trtg[E1:E2] Sig(E) Phi_m(E) dE / Intg[E1:E2] Phi_m(E) dE Maxwellian average : Avg-Sign = (2/car(P(P))) Trtg[E1:E2] Sig(E) Phi_m(E) dE / Intg[E1:E2] Phi_m(E) dE Maxwellian average : Avg-Sign = (2/car(P(P))) Trtg[E1:E2] Sig(E) Phi_m(E) dE / Intg[E1:E2] Phi_m(E) dE Maxwellian average : Avg-Sign = (2/car(P(P))) Avg-Sign / Sig(2200) Westcott g-factor : G-fact = 2/sqrt(Pi)) Avg-Sign / Sig(2200) Resconnee Integral i E8. Integr = Intg[E1:E1] Sig(E) Phi_m(E) dE / Intg[E1:E2] Phi_m(E) dE Fission spectrum : F1 = 1.30000E-08 (eV) E2 = 1.00000E+05 (eV) Integral of Spectrum : F1 = 1.3000E-08 (eV) E2 = 2.00000E+07 (eV) Integral of Spectrum : F1 = 1.3000E+08 (eV) E2 = 2.0000E+07 (eV) Integral of Spectrum : F1 = 1.3000E+08 (eV) E2 = 2.0000E+07 (eV) Integral of Spectrum : Sig(Clas) Sig(E120) Sig(E120) Avg-Signs G-fact Res Integ Sig(Fis) Sig(E14) MAT Selected Energy : E14 = 1.4000E+07 eV Reconsection : Sig(Clas) Sig(E2200) Sig(Ezero) Avg-Signs G-fact Res Integ Sig(Fis) Sig(E14) MAT Selected Energy : E14 = 1.4000E+07 eV Reconsection : Sig(Clas) Sig(E120) Sig(E220) Sig(Ezero) Avg-Signs G-fact Res Integ Sig(Fis) Sig(E14) MAT Selected Energy : E14 = 1.4000E+07 eV Reconsection : Sig(Clas) Sig(E2200) Sig(Ezero) Avg-Signs G-fact Res Integ Sig(Fis) Sig(E14) MAT Selected D : Phi_m(D) = 1.0000E+00 & 0.0000E+00 & 0.0000E</pre>
Duke Image: State NCCentral NC STATE Image: State </th <th>34</th>	34

σigma: graphical interface

ENDF: utility data often hidden from users

Laboratory Name

- 1 Atomic Energy of Canada Ltd., Canada
- 2 Argonne National Laboratory
- 3 Atomic Weapons Establishment, UK
- 4 Brookhaven National Laboratory
- 5 Canadian Nuclear Laboratories, Canada
- 6 Centro Atómico Bariloche, Argentina
- 7 Defense Nuclear Facilities Safety Board
- 8 General Atomics
- 9 Idaho National Engineering and Environmental Laboratory
- 10 International Atomic Energy Agency
- 11 Institut De Radioprotection Et De Sûreté Nucléaire, France
- 12 Los Alamos National Laboratory
- 13 Lawrence Berkeley National Laboratory
- 14 Lawrence Livermore National Laboratory
- 15 National Institute of Standards and Technology
- 16 Naval Nuclear Laboratory
- 17 North Carolina State University
- 18 Oak Ridge National Laboratory
- 19 Ohio University
- 20 Pacific Northwest National Laboratory
- 21 Purdue University
- 22 Rensselaer Polytechnic Institute
- 23 Sandia National Laboratories
- 24 University of California, Berkeley
- 25 Westinghouse Electric Corp.

THE UNIVERSITY of NORTH CAROLINA at CHAPEL HILL

More here than you might expect?

Select first a library, then a sublibrary and finally click on a chemical element to obtain results. Data are available for materials with a cyan background.

Library:	JENDL-3.3 (Japan, 2002) 🔹	Sublibrary:	Alpha reactions			
0 1 n H	ENDF/B-VII.1(USA, 2011)		Neutron reactions	Results for	ENDF-6 format	Human-readable
3	ENDF/B-VII.0 (USA, 2006)		Thermal neutron scattering	Z=82	Whole file -	Interpreted
	JEFF-3.1 (Europe, 2005)		Neutron cross section standards	204	res. param.	Interpreted
Na 1	JENDI-4 0 (Japan 2010)			207	Cross sections:	
19 1	JENDE 4.0 (Japan, 2010)	27 28	Photonuclear reactions	208	(n,total)	Interpreted Plot
27	JENDL-3.3 (Japan, 2002)		Proton reactions		(n,elastic)	Interpreted Plot
Řb	ROSEOND (Russia 2008)	i Rh Pd	Doutenan and the		(n,non-elastic)	Interpreted Plot
55 1		77 78	Deuteron reactions		(n,inelastic)	Interpreted Plot
Cs I	CENDL-3.1 (China, 2009)	s Ir Pt	Triton reactions		(n,anything)	Interpreted Plot
87	ENDF/B-VI.8 (USA, 2001)		Ho-2 reactions		(n,2n)	Interpreted Plot
					(n,3n)	Interpreted Plot
	58 59 60 61 62 63	64 65	Alpha reactions		$(n,n\alpha)$	Interpreted Plot
	Ce Pr Na Pm Sm Eu		Decay data		$(n,2n\alpha)$	Interpreted Plot
	Th Pa U Nn Pu An	196 97 1 Cm Bk			(n,np)	Interpreted Plot
			Neutron-induced fission yields		(n,na)	Interpreted Plot
Version His	tory:		Spontaneous fission vields		(n,n)	Interpreted Plot
ENDE	(P)/II 1 evaluated neutron librar				(1,41) (n 2nn)	Interpreted Plot
	D-VII. 1 evaluated field of librar	у-	Photo-atomic		(n, znp) (n, n',) (click to	avpand)
ENew in ve	rsion 3.1 (October 2009)		Atomic relaxation			Interpreted Dist
ENew in ve	rsion 3.0 (February 2009)		Electro-atomic		(II,IIC)	Interpreted Plot
Ellew in ve	rsion 2.0 (April 2006)				(n, γ)	Interpreted Plot
	rsion 1.0 (April 2007)				(n,p) (n,d)	Interpreted Plot
					(1,0)	interpreted Plot

LL N

THE UNIVERSITY of NORTH CAROLINA at CHAPEL HILL

Evaluated charged particle data: harder to find

Oiom	È E	/alua	ateo	1 Nu	ucle	ar	Dat	a F	ile ((EN	DF)	Re	trie	val	& F	Plott	ing					Interpr	reted I	ENDF 1	file	for s	igma-	ei.in
Periodic	c Table	Brow	se	Dir	ecto	ry Tr	ee Br	owse		Basi	c Ret	rieva		Adva	nce	d Retri	eval	Plot (Cart	Com	putations	(a,xn)	cross	sectio	on			
Select first a	a librar	y, thei Data	n a s are a	ublib availa	rary a ible f	and f	inally ateria	click Is wi	k on a	a che cyan	mica back	l eler grour	nent t nd.	to ob	tain	result	S.					QM = -2.63 QI = -2.636 Interpolatio	630E+06 e 30E+06 eV n table:	V				
Library:	JENDL	·3.3 (J	apan	, 200	2)	~	Sub	librar	v: 🗍	Alpha	reac	tions				~						368 Cross secti	on table.	2	0	0	0	0
																2	Resu	Its for	r <u>END</u>	DF-6 for	mat Hun	eV	barn	s e	eV	barns	eV	barns
n H Li E 11 1 Na M 19 2 K 0 37 3 Rb 9 55 5 Cs E 87 8 Fr F	4 3e 12 20 21 2a 5d 38 39 5r Y 56 57 3a La 38 89 Ra Ad Ce 58 Ce 71	222 Ti 40 Zr 72 Hf 104 Rf 59 Pr 91 92	23 V 41 Nb 73 Ta 105 Db 60 Nd 92	24 Cr 42 Mo 74 VV 106 Sg 61 Pm 93 Np	25 Mn 43 Tc 75 Re 107 Bh 62 Sm 94 Pu	26 Fe 44 76 0s 108 Hs 63 Eu 95	27 Co 45 Rh 77 Ir 3 109 Mt 64 Gd 96	28 Ni 46 Pd 78 Pt 110 Ds 65 Tb 97 8k	29 Cu 47 Ag 79 Au 111 Rg 66 Dy 98	30 Zn 48 Cd 80 Hg 67 Ho 99 Fs	5 B 13 AI 31 Ga 49 In 81 TI 81 TI 68 Er 100 Em	6 C 14 Si 32 Ge 50 Sn 82 Pb 69 Tm 69 Tm 101	7 N 15 P 33 As 51 Sb 83 Bi 70 Yb 102 No	8 0 16 S 34 52 Te 84 Po 71 Lu 103	9 F 17 CI 355 Br 533 I 85 At	He 10 Ne 18 Ar 36 Kr 54 Xe 86 Rn	Z	=13 27	Wh intro Cros (α,> Enei (α,>	nole file roductio ss secti xn) ergy-ang xn)	- n Inte ions: Inte le distribi Inte	3.027380+6 3.089000+6 3.149000+6 3.168000+6 3.201000+6 3.214000+6 3.214000+6 3.231000+6 3.245000+6 3.258000+6 3.290000+6 3.306000+6 3.349000+6 3.366000+6 3.381000+6	0.000000+ 7.700000- 3.610000- 5.500000- 2.690000- 3.270000- 6.800000- 2.330000- 1.260000- 2.340000- 3.730000- 1.060000- 6.200000- 3.610000- 2.770000- 2.770000- 2.040000- 1.150000- 1.120000-	3.050000 3.109000- 3.158000- 3.158000- 3.158000- 3.158000- 3.158000- 3.158000- 3.29000- 3.224000- 3.224000- 3.251000- 3.251000- 3.265000- 3.265000- 3.282000- 3.282000- 3.309000- 3.309000- 3.326000- 3.326000- 3.326000- 3.326000- 3.326000- 3.326000- 3.326000- 3.326000- 3.326000- 3.326000- 3.326000- 3.370000- 4.3.387000-	+6 4.3 +6 3.5 +6 1.0 +6 1.6 +6 1.6 +6 1.1 +6 1.1 +6 2.3 +6 1.1 +6 4.9 +6 3.6 +6 2.3 +6 2.6 +6 2.6 +6 2.9 +6 8.9	300000-6 50000-6 50000-5 50000-5 120000-5 120000-5 120000-5 120000-5 120000-5 140000-5 140000-5 100000-5 1800000-5 1800000-5 1800000-5 1800000-5 1800000-5 1800	3.069000+6 3.132000+6 3.181000+6 3.198000+6 3.210000+6 3.210000+6 3.228000+6 3.255000+6 3.269000+6 3.269000+6 3.314000+6 3.346000+6 3.358000+6 3.377000+6 3.3880000+6 3.3880000000000000000000000000000000000	1.270000-5 1.870000-5 1.24000-5 2.22000-5 4.28000-5 1.99000-5 1.92000-5 2.08000-5 2.63000-5 3.10000-5 3.10000-5 2.99000-5 2.20000-5 1.62000-5 1.58000-4
																						3.389000+6 3.409000+6 3.424000+6 3.454000+6 3.454000+6 3.470000+6 3.499000+6 3.514000+6 3.514000+6 3.529000+6 3.557000+6 3.576000+6 3.603000+6 3.617000+6 3.635000+6	1.210000- 5.000000- 6.800000- 2.530000- 6.400000- 9.400000- 3.480000- 3.620000- 2.570000- 1.620000- 7.300000- 4.240000- 1.250000- 8.200000- 8.200000- 9.0000000-	4 3.399000 5 3.414000 5 3.428000 4 3.428000 4 3.459000 4 3.459000 4 3.450000 4 3.519000 4 3.519000 5 3.549000 5 3.549000 5 3.562000 4 3.580000 5 3.596000 5 3.668000 4 3.638000 4 3.638000	+6 6.5 +6 4.6 +6 1.0 +6 1.7 +6 7.8 +6 1.1 +6 3.6 +6 3.3 +6 3.3 +6 1.2 +6 5.1 +6 5.1 +6 5.1 +6 5.9	500000-5 530000-5 300000-4 300000-4 520000-4 520000-4 520000-4 200000-4 200000-4 130000-5 520000-4 130000-5 520000-4 130000-5 520000-4 130000-5 520000-4 130000-5 520000-4 130000-5 520000-4 130000-5 520000-4 130000-5 520000-4 130000-5 520000-4 130000-5 520000-4 130000-5 520000-4 130000-5 520000-4 130000-5 520000-4 1300000-4 130000-5 520000-4 130000-5 520000-4 130000-5 520000-4 130000-5 520000-4 130000-5 520000-4 130000-4 130000-5 520000-4 130000-5 520000-4 130000-5 520000-4 130000-5 520000-4 130000-5 520000-4 130000-5 520000-4 130000-5 520000-4 130000-5 520000-4 130000-5 520000-4 130000-5 520000-4 130000-5 520000-4 130000-5 520000-4 130000-5 520000-4 130000-5 520000-4 130000-5 520000-4 130000-5 5200000-4 130000-5 520000-4 130000-5 5200000-4 130000-5 5200000-4 130000-5 5200000-4 1300000-5 5200000-4 1300000-5 5200000-4 1300000-5 5200000-4 1300000-5 5200000-4 1300000-5 5200000-4 1300000-5 5200000-4 1300000-5 5200000-4 1300000-5 5200000-4 1300000-5 5200000-4 1300000-5 5200000-4 1300000-5 5200000-4 1300000-5 5200000-4 1300000-5 5200000-4 1300000-5 5200000-4 1300000-4 1300000-4 1300000-4 1300000-4 1300000-4 1300000-4 1300000-4 1300000-4 1300000-4 1300000-4 1300000-4 1300000-4 1300000-4 13000000-4 1300000-4 1300000-4 1300000-4 1300000-4 1300000-4 1300000-4 1300000-4 1300000-4 13000000-4 13000000-4 13000000-4 13000000-4 1300000000-4 13000000-4 130000000-4 13000000000000000000000000000000000000	3.404000+6 3.421000+6 3.435000+6 3.450000+6 3.450000+6 3.480000+6 3.506000+6 3.523000+6 3.535000+6 3.552000+6 3.552000+6 3.567000+6 3.660000+6 3.615000+6 3.615000+6 3.644000+6	5.60000-5 5.010000-5 1.59000-4 3.730000-4 8.70000-4 3.620000-4 3.770000-4 3.770000-4 1.970000-4 8.40000-5 6.50000-5 3.80000-5 6.000000-5 2.160000-4 2.020000-3 4.180000-4
Juk	C		N	C Ç	ent	ra			ST/	TE		ÎÌ,Ì		of N	ORT	H CA	ROLIN	A										

at CHAPEL HILL

UNIVERSITY

Early compilations of charged particle data

UNIVERSITY

II N I

1

of NORTH CAROLINA

at CHAPEL HILL

TUNL

EXFOR: Compiled reaction data

Web and Database Programming: Viktor Zerkin, NDS, International Atomic Energy Agency (V.Zerkin@iaea.org) 2023-05-23 Data Source: Network of Nuclear Reaction Data Centres (NRDC)

THE UNIVERSITY of NORTH CAROLINA at CHAPEL HILL TUN

Class Input? What "industries" need nuclear data?

Where can you fit in?

 Nuclear Medicine Isotope production Decay energy/Dose Irradiation dose 	 Nuclear Energy 	 Space exploration
• Defense	 Non-proliferation 	 Industry Interrogation
 Construction shielding 	• Stewardship	
	 Basic science Reaction models 	 Basic science Structure models
Duke S NCCentral NC STATE UNIVERSITY	THE UNIVERSITY of NORTH CAROLINA at CHAPEL HILL	43

NDIAWG (1 of 1)

 The Nuclear Data InterAgency Working Group (NDIAWG)
 continues quarterly meetings for collaboration and coordination

Agency program membership increased from 8 to 15 since 2020 and highlights the diverse areas where nuclear data has impact

- Human Spaceflight
- Electronics
- Propulsion/power
 - Spectroscopy

Boxes indicate new membership since 2020

NDWG Roster as of January 2022

PARTNERS	NDWG Member	Organization		
	Lee Bernstein	LBNL		
DOE/SC/Nuclear Physics	Catherine Romano	Aerospace Corp		
NNSA/DNN R&D/PD/NA-22	Fredrik Tovesson	ANL		
	Todd Bredeweg	LANL		
NINSA/DININ R&D/FORENSICS	Jason Burke	LLNL		
	Ron Soltz	LLNL		
NNSA/DNN R&D/SNDD	David Gerts	LANL		
	Mike Zerkle	NNL		
NNSA/NCSP/NA-511	Marco Pigni	ORNL		
NNSA/NR/NA-30	Mike Zerkle	NNL		
NNSA (Defense Dreg (NA 112	Jo Ressler	LLNL		
NNSA/Delense Prog./NA-113	Shea Mosby	LANL		
NNSA (Dofonco Brog /NA 114	Nathan Gibson	LANL		
NNSA/Delense Prog./NA-114	Robert Casperson	LLNL		
	Matthew Jesse	ORNL		
DOE/Nuclear Energy	Javier Ortensi	INL		
NDC	Will Wieselquist			
NKC	Jesse Brown	ORNL		
CA /Office of Nuclear Ferencies /NA 82	Corey Keith	LANL		
ISA/Office of Nuclear Forensics/NA-85	Chris Krenn	LLNL		
DOE/SC/Isotope Office	Etienne Vermeulen	LANL		
NINGA /Emorgonov Bosnonso /NA 82	John Koglin	LLNL		
	Pete Jaegers	LANL		
NIST	Brian Zimmerman	NIST		
US Nuclear Data Program	Dave Brown	BNL		
NNSA/Nuclear Safeguards and Security/NA-24	Young Ham	Tech Advisor		

49 Members 17 programs 11 national laboratories

NDWG Member

ANL	Filip Kondev	
ANL	Guy Savard	
BNL	Alejandro Sonzogni	
INL	Sebastian Schunert	
JLAB	Mike Dion	
LANL	Mark Chadwick	
LANL	Robert Little	
LBNL	Brian Quiter	
LBNL	Bethany Goldblum	
LLNL	Teresa Bailey	
LLNL	Tim Rose	
ORNL	TBD	
PNNL	Stephanie Lyons	
PNNL	Bruce Pierson	
SNL	Pat Griffin	
SNL	Phil Dreike	
SRNL	Kalee Fenker	
SRNL	Chris McGrath	
AT LARGE MEMBERS		
Jim Koster		LANL
Patrick Talou		LANL
John Engle		Univ. WISC
Teresa Bailey		LLNL
Morgan White		LANL

Kathy Romano WANDA 2023

Horizontal Evaluations & Topical Reviews

Nuclear Data Sheets v. 97 (2002) 241

Table of Superdeformed Nuclearand Fission Isomers*Third Edition (Od

Balraj Singh[†], Roy Zywina[†], and Richard B. Fires [†] McMaster University, Hamilton, Ontario L88 4M1, Canada (hispin@mcmaster.ca) [‡] Lawrence Berkeley National Laboratory, Berkeley CA 94720, USA (rbf@lbLgov)

From F. Kondev

NC STATE

UNIVERSITY

1

- IAEA-CRP evaluation of fission yields: A. Sonzogni, A. Mattera T. Kawano, F. Kondev – continuing.
- IAEA-led activities on improving ENSDF codes: J. Chen, F. Konde IAEA-ICTP organized workshops: S. Basunia, J. Chen, E. McCutch The Atomic Mass Evaluation (AME) and the evaluation of basi ground states and isomers (NUBASE): F. Kondev – continuing.
- Update of r0 radius parameter and revision of ALPHAD-radD (and ALPHAD-RadD codes available in November 2020; even published in NDS (2020Si16). This work was done in collaboratior Akal University, India, and with Dr. A.K. Jain, Amity University, No Modernization of ALPHAD-radD analysis code: J. Chen, B. Sii developed and completed to replace the legacy ALPHAD-radD fi parameters from 2020Si16 in NDS. Update of r0 parameter to ir alpha decays and from 2020 to 2023 and to incorporate data updated evaluation of alpha-decay data for even-even nuclei, paper on updated r0 parameters is being done in collaboration Akal University, India,

 IAEA-led decay data library for monitoring applications: J. Che continuing.

 Compilation of current papers on mass measurements on an c available on nuclearmasses.org: B. Singh. Compiled file for 2020 2020 and 2p decays of nuclear available on nuclearmasses.org: B. Singh. Compiled file for 2020 2020 and 2p decays of nuclear available on nuclearmasses.org: B. Singh. Compiled file for 2020 2020 and 2p decays of nuclear available on nuclearmasses.org: B. Singh. Compiled file for 2020 2020 and 2p decays of nuclear available on nuclearmasses.org: B. Singh. Compiled file for 2020 2020 and 2p decays of nuclear available on nuclearmasses.org: B. Singh. Compiled file for 2020 2020 and 2p decays of nuclear available on nuclearmasses.org: B. Singh. Compiled file for 2020 2020 and 2p decays of nuclear available on nuclearmasses.org: B. Singh. Compiled file for 2020 2020 and 2p decays of nuclear available on nuclearmasses.org: B. Singh. Compiled file for 2020 2020 and 2p decays of nuclear available on nuclearmasses.org: B. Singh. Compiled file for 2020 2020 and 2p decays of nuclearmasses.org: B. Singh. Compiled file for 2020 2020 and 2p decays of nuclearmasses.org: B. Singh. Compiled file for 2020 2020 and 2p decays of nuclearmasses.org: B. Singh. Compiled file for 2020 2020 and 2p decays of nuclearmasses.org: B. Singh. Compiled file for 2020 2020 and 2p decays of nuclearmasses.org: B. Singh. Compiled file for 2020 2020 and 2p decays of nuclearmasses.org: B. Singh. Compiled file for 2020 2020 and 2p decays of nuclearmasses.org: B. Singh. Compiled file for 2020 2020 and 2p decays of nuclearmasses.org: B. Singh. Compiled file for 2020 2020 and 2p decays of nuclearmasses.org: B. Singh. Compiled file for 2020 2020 and 2p decays of nuclearmasses.org: B. Singh. Compiled file for 2020 2020 and 2p decays of nuclearmasses.org: B. Singh. Compiled file for 2020 2020 and 2p decays and 2p decays of nuclearmasses.org: B. Singh. Compiled file for 2020 2020 and 2p decays and 2p

THE UNIVERSITY

at CHAPEL HILL

of NORTH CAROLINA

and is available on nuclearmasses.org webpage. Work is continuing for 2023 update.

- IAEA-CRP on Delayed Neutron Emission Probabilities:
Reference database at IAEA-NDS: B. Singh,
E. McCutchan, A. Sonzogni completed, two articles published in NDS. Updates for Z>28 region
completed in Jan 2021. Update for Z=2-28 nuclei in progress: B. Singh. This work is being done in
collaboration with Drs. P. Dimitriou and M. Verpelli, IAEA-NDS.0.40.30.4
- *WalletCraft:* Object-oriented database for ground and long-lived isomeric properties: E. McCutchan, B. Shu, A. Sonzogni continuing.
- Atlas of Isomers project: B. Singh update of 2015Ja04 Atlas has been completed with updated version to cover literature up to Oct 2022 for isomers of half-life ≥10 ns, in addition to reevaluation of half-lives and isomer energies. Paper has now appeared in ADNDT (Jan-Feb 2023 issue). This work was done in collaboration with Drs. S. Garg and Y. Sun, University of Shanghai, Dr. B. Maheshwari, University of Zagreb, and Drs. A.K. Jain and A. Goel, Amity University, Noida, India. Work is continuing for isomers in the half-life range of 0.1-10 ns.

- **Update of 1998Si17 Review of log ft values:** B. Singh all the beta decay schemes available up to the December 2022 version of ENSDF and from significant newer literature were considered, updated for AME-2020 Q values. All the files have been run through new BetaShape code for log *ft* values. Filtering codes developed at Dresden have been executed. A paper is nearly ready for submission in February 2023. This work is being carried out in collaboration with Dr. X. Mougeot, CEA, Saclay, Mr. S. Turkat and Prof. K. Zuber, TU, Dresden.
- **Update of 2000Am02 magnetic dipole rotational bands**: B. Singh this work has now evolved to compilation of multi-qp high-spin dipole bands with dominant M1 transitions, which is a much larger project continuing. This work is being done in collaboration with Drs. S. Singh and S. Kumar, Akal University, India, and Dr. A.K. Jain, Amity University, Noida, India
- **B(E2)** project for first 2+ and 4+ states of all the even-even nuclei: B. Pritychenko and B. Singh. Work on the first 2+ states was published in 2016Pr01: ADNDT. The on-going project is an update of the 2016 work as well as first evaluation of B(E2) values for the first 4+ to first 2+ states.
- *Gamma-ray transition probabilities for all experimentally known multipolarities for all the nuclei:* J. Chen and B. Singh update of Endt's work of the 70's. This project has started recently and will take two-three years to complete.
- **Proton Radioactivity:** B. Singh, J. Chen, A.A. Sonzogni: compilation and evaluation of known 1p and 2p decays of nuclei on drip lines, about 1-2 year project started Dec 2022.

