

Experimental Techniques: Fundamentals

Martin Alcorta

EBSS2023

**Discovery,
accelerate**

2023-07-10

Outline

- (Quick) History of radiation detectors
- Fundamentals of detection (what exactly do we measure?)
- Types of detectors
	- Gas \rightarrow electron/ion pairs -> current
	- Semiconductors, electron/hole pairs \rightarrow current
	- Scintillators \rightarrow light -> current
- Signal pulse processing (from signal to counts in a spectrum)

Resources

https://cds.cern.ch/record/117989/files/CERN-77-09.pdf

Resources

https://cds.cern.ch/record/117989/files/CERN-77-09.pdf

22 TRIUMF

Radiation Detectors: Brief History

An Electrical Method of Counting the Number of a-Particles from Radio-active Substances. By E. RUTHERFORD, F.R.S., Professor of Physics, and H. GEIGER, Ph.D., John Harling Fellow, University of Manchester. (Read June 18; MS. received July 17, 1908.)

1908, Ernest Rutherford and Hans Geiger: "An electrical method of counting the number of α-particles from radio-active substances"

E. Rutherford and H. Geiger, Proceedings of the Royal Society A, **81**. 546

Radiation Detectors: Brief History

■ "In our experiments to detect a single α-particle, it was arranged that the α-particles could be fired through a gas at low pressure exposed to an electric field somewhat below the sparking value. In this way, the sma produced by one α-particle in passing along the gas could be magnifiĕd several thousand times. The sudden current
through the gas due to the entrance of an α-particle in the testing vessel was thus increased sufficiently

E. Rutherford and H. Geiger, Proceedings of the Royal Society A, 81. 546 "An Electrical Method of Counting the Number of α -Particles from Radio-active Substances

What (exactly) are we trying to measure?

Interactions of (heavy) *charged particles* **with matter: i.e. What do we measure?**

- Mainly interact via Coulomb force (interactions with nucleus negligible) and leave behind free **electron** / **ion pair**
- Bethe-Bloch formula for stopping power S:

$$
-\frac{dE}{dx} = K\rho \frac{Z}{A} \frac{z^2}{\beta^2} \left[\ln \frac{2m_0 \gamma^2 v^2 W_{max}}{I^2} - 2\beta^2 \right]
$$

Interactions of (heavy) *charged particles* **with matter: i.e. What do we measure?**

- Mainly interact via Coulomb force (interactions with nucleus negligible) and leave behind free **electron** / **ion pair**
- Bethe-Bloch formula for stopping power S:

$$
-\frac{dE}{dx} = K \frac{\sqrt{2}Z^2}{A\beta^2} \left[\ln \frac{2m_0 \gamma^2 v^2 W_{max}}{I^2} - 2\beta^2 \right]
$$

Materials with higher charge slow down particle faster

Interactions of (heavy) *charged particles* **with matter: i.e. What do we measure?**

- Mainly interact via Coulomb force (interactions with nucleus negligible) and leave behind free **electron** / **ion pair**
- Bethe-Bloch formula for stopping power S:

$$
-\frac{dE}{dx} = K\rho \frac{Z z^2}{AB^2} \left[\ln \frac{2m_0 \gamma^2 v^2 W_{max}}{I^2} - 2\beta^2 \right]
$$

Materials with higher mass do not slow down particle faster

Interactions of (heavy) *charged particles* **with matter: i.e. What do we measure?**

- Mainly interact via Coulomb force (interactions with nucleus negligible) and leave behind free **electron** / **ion pair**
- Bethe-Bloch formula for stopping power S:

$$
-\frac{dE}{dx} = K\rho \frac{ZZ^2}{A\beta^2} \left[\ln \frac{2m_0 \gamma^2 v^2 W_{max}}{I^2} - 2\beta^2 \right]
$$

Particles with higher charge lose energy faster

Interactions of (heavy) *charged particles* **with matter: i.e. What do we measure?**

- Mainly interact via Coulomb force (interactions with nucleus negligible) and leave behind free **electron** / **ion pair**
- Bethe-Bloch formula for stopping power S:

$$
-\frac{dE}{dx} = K\rho \frac{Z Z^2}{A\beta^2} \left[\ln \frac{2m_0 \gamma^2 v^2 W_{max}}{I^2} - 2\beta^2 \right]
$$

Energy loss varies inversely with particle energy

Interactions of (heavy) *charged particles* **with matter**

$$
-\frac{dE}{dx} = K\rho \frac{ZZ^2}{A\beta^2} \left[\ln \frac{2m_0 \gamma^2 v^2 W_{max}}{I^2} - 2\beta^2 \right]
$$

■ We can use this to our advantage for particle identification!

Interactions of *gamma-rays* **with matter**

- § Great! But, what about neutrons and gammas? No coulomb force \odot to slow it down
	- Detect charged particle (e-) emitted via interactions
- Unlike charged particles, gamma-rays do not have continuous energy loss:
	- Photoelectric absorption-> α $Z^{\sim 4.5}$ E_{γ} $E_{\nu} \approx$ kicked out e-
	- Compton scattering: most common, kicks out e-, linear dependence with Z
	- Pair production: dominates > 5-10 MeV

Progress in Particle and Nuclear Physics 60 (2008) 283–337

22 TRIUMF

Interactions of *gamma-rays* **with matter** the atom recoils in this process, and usually in the atom recoils in the atom r rials to tens of keV for materials with higher atomic number. Conservation of momentum

- Great! But, what about neutrons and gammas? No coulomb force \odot to slow it down
- Unlike charged particles, gamma-rays do not have continuous energy loss:
	- § **Photoelectric absorption->** ∝
		- $E_\gamma \approx$ kicked out e-
	- Compton scattering: most common, the characteristic X-rays may travel some distance (typekicks out e-, linear dependence with $Z = \begin{bmatrix} 1 & 1 & 1 \end{bmatrix}$
	- **Pair production: dominates > 5-10** $\frac{1}{\sqrt{2\pi}} \sum_{n=0}^{\infty} \frac{1}{n}$ MeV

 $Z^{\sim 4.5}$

 $E_{\gamma}^{~~3.5}$

Interactions of *gamma-rays* **with matter**

- Great! But, what about neutrons and gammas? No coulomb force \odot to slow it \searrow down
- Unlike charged particles, gamma-rays do not have continuous energy loss:
	- Photoelectric absorption-> α $Z^{\sim 4.5}$ $E_\gamma^{3.5}$
		- $E_v \approx$ kicked out e-
	- Compton scattering: most common, **kicks out e-, linear dependence with Z**
	- Pair production: dominates > 5-10 MeV

22 TRIUMF

Interactions of *gamma -rays* **with matter**

- Great! But, what about neutrons and gammas? No coulomb force \odot to slow it down
- Unlike charged particles, gamma-rays do not have continuous energy loss:
	- **Photoelectric absorption->** $\alpha \frac{Z^{\sim 4.5}}{F^{\sim 3.5}}$ $E_\gamma^{3.5}$
		- $E_{\gamma} \approx$ kicked out e-
	- Compton scattering: most common, kicks out e -, linear dependence with Z
	- § **Pair production: dominates at higher energies**

Interactions of *gamma-rays* **with matter**

Interactions of *neutrons* **with matter**

- Neutrons interact with nucleus of absorbing material-> detect secondary radiation of resulting heavy charged particles
- Proton recoil scintillators (n,p)
- Obtain energy from ToF
	- Liquid scintillators
		- **DESCANT** array
	- Plastic scintillators
		- § VANDLE, MONA

Detectors

§ **Gas detectors**

■ IC, proportional counters

§ **Semiconductor diodes**

■ Si (charged particle), Ge (gamma-ray)

§ **Scintillation detectors**

• light output

Gas Detectors

- Charged particle creates e-/ion pairs
	- W-value ≈ 25-35 eV
	- ~30k pairs per 1 MeV for typical gas
- Ionization chambers
	- Electrons drift to anode and induced charge seen on electrode-> signal independent of HV
- Proportional counters
	- Townsend avalanche

Gas Detectors

- Charged particle creates e-/ion pairs
	- W-value \approx 25-35 eV
	- ~30k pairs per 1 MeV for typical gas
- Ionization chambers
	- Electrons drift to anode and induced charge seen on electrode-> signal independent of HV
- Proportional counters
	- Townsend avalanche

https://cds.cern.ch/record/117989/files/CERN-77-09.pdf

- **Drift velocity** $v =$ μ E \overline{p}
- \sim ~10 ms over 1 cm for ions ~us for e-
- Use the "fast" signal to count beam
	- Lose portion of pulse derived from ion drift
	- Amplitude now dependent on where electrons formed

$$
\blacksquare V|_{elec} = \frac{n_0 e}{c} \cdot \frac{x}{d}
$$

- **Frisch grid removes position** dependence of signal on "y"
- Signal derived only from the drift of the electrons
	- Held at intermediate potential (must be transparent to e-)

Gas Detectors: Ionization chambers

- Using e- signal allows for fast counting; can also identify contaminants ($\Delta E \propto Z^2$)
- Tilted electrodes to reduce response time
	- § 500 kHz, 5% energy resolution

IRIS (TRIUMF) transmission IC

Nuclear Inst. and Methods in Physics Research, A 890 (2018) 119–125 Nuclear Inst. and Methods in Physics Research, A 751 (2014) 6-10

Gas Detectors: Proportional counteres

- Same principle as IC, increase HV (\sim 10⁶ V/m), create additional e-/ion pair-> avalanche
- PPAC/PGAC:

■ Position sensitive PPAC/PGAC often used to determine (x,y) coordinate of beam (e.g. FP detector in spectrometers)

Gas Detectors: Proportional counters

- Time projection chambers (TPC)
	- 3d tracking using drift time to determine position
- Active targets
	- Counter gas acts as target and detectors
- § AT-TPC, TexAT, ACTAR, ANASEN
- Employ GEMs, Micromegas
- Many of these use auxiliary detectors (e.g. Si) to fully stop light ions

Nuclear Inst. and Methods in Physics Research, A 954 (2020) 161341

Gas Detectors: GEMS

- Gas electron multiplier (GEM)
	- Excellent spatial resolution
	- **HV applied between faces of foil results in** very high field -> gas multiplication
	- Can be combined to increase multiplication factor
		- **Analogous to dynode stages of PMT**

Pitch is 140 µm, diameter 70 µm

F. Sauli / Nuclear Instruments and Methods in Physics Research A 805 (2016) 2–24 3

- Semiconductors have small band gap ~1 eV
	- Some valence electrons kicked into conduction band thermal excitations (leaves behind hole)

Electron

energy

Si

Si

 $\overline{\mathscr{S}}$

the back dead layer thickness is reduced to the surface electrical contact that is reduced to the surface electrical contact that is reduced to the surface electrical contact that is reduced to the surface electrical cont

Semiconductor detectors

- P-n diode junction, **reverse** bias to increase depletion region
	- i.e. V<0 on p-side
	- Tries to move e- from p to n side
	- Very little current flow (only minority carriers)
	- "Fully depleted detector"
- **Incoming particle creates e- hole pairs** (analogous to e- ion pairs in gas)
- Good resolution
	- ~3 eV ionization energy for Si/Ge vs 30 eV gas

Semiconductor detectors: Si

- Si strip detectors
	- Use segmentation on both sides of detector for better position resolution
	- Minimize deadlayers

Tengblad *et al*, NIMA 525 (2004) 458–464

Semiconductor detectors: Si

http://www.micronsemiconductor.co.uk/

Semiconductor detectors: Ge

- HPGe ~0.1% resolution (~2 keV FWHM)
	- Coaxial type most common
- Must be cooled with LN2 to reduce thermal excitation

Semiconductor detectors: Ge

- Recall that gamma-rays primarily interact via Compton scattering at relevant energies
	- Large Compton background
- Typical solution is to surround Ge detectors with BGO (high efficiency) and use as anti-coincidence (Compton suppressors)
	- Gammasphere, Euroball, TIGRESS

Semiconductor detectors: Ge

- New generation of tracking arrays § **GRETINA**, AGATA
- Combination of segmented detectors, digital electronics, and pulse processing
- Extract: Energy, time, position, N_{int}

Detectors: scintillators

§ A scintillator detector consists of two basic elements, the scintillator material which produces the light and a photodetector which detects the light

IEEE TRANSACTIONS ON NUCLEAR SCIENCE, VOL. 55, NO. 4, AUGUST 2008 2425 https://scionix.nl/

Detectors: scintillators

- Light produced via fluorescence: **prompt** emission of visible radiation
	- Absorption of KE from charged particle emitted in de-excitation
	- Can use slow component of response for **pulse shape discrimination** (e.g. differentiate gamma-rays from neutrons)

Detectors: scintillators

- Not a very efficient method of detection
	- Low efficiency to convert particle to light
	- Couple to PMT via optical grease $(\epsilon \downarrow)$
	- Must match wavelength of PMT $(\epsilon \downarrow)$

https://www.hamamatsu.com/eu/en.html

Detectors: scintillators

- Not a very efficient method of detection
	- Low efficiency to convert particle to light
	- § Couple to PMT via optical grease (e↓)
	- Must match wavelength of PMT $(\epsilon \downarrow)$
	- QE of photo-emission from photocathode $(\epsilon \downarrow)$

https://www.hamamatsu.com/eu/en.html

Detectors: scintillators

- Not a very efficient method of detection
	- Low efficiency to convert particle to light
	- § Couple to PMT via optical grease (e↓)
	- Must match wavelength of PMT $(\epsilon \downarrow)$
	- QE of photo-emission from photocathode $(\epsilon \downarrow)$

Signal processing

 $i(t)$ ■ Fundamental output of all $Q = \int i(t) dt$ radiation detectors is a burst charge Q proportional to energy How to go from this

Signal processing

Signal processing

2023-07-10 EBSS2023 – Martin Alcorta 48

Signal processing

https://www.ortec-online.com/products/electronics/preamplifiers

2023-07-10 EBSS2023 – Martin Alcorta 49

- Rise time is proportional to the charge collection time
- Amplitude is proportional to the charge Q

https://www.ortec-online.com/products/electronics/amplifiers

(FPGA)

https://griffin.triumf.ca/daq.html

Signal processing (digital)

§ GRIF16 module

- **16 ch, 14 bit, 100** MHz sampling
- Output is energy, time

Courtsey A. Garnsworthy

ADC unit

ADC unit

Signal processing (digital)

- § GRIF16 module
	- 16 ch, 14 bit, 100 MHz sampling
	- Output is energy, time

Summary

- Three main types of detectors
	- Gas detectors (IC, proportional counters)
	- Scintillators
	- Semiconductors (Si, Ge)
- Essentially, output of all detectors is a small current proportional to energy of incident radiation
- Remember to always look at the big picture: What variables are you trying to measure/extract from the experiment?
- Understanding how your detector(s) works goes a long way when inevitably something goes wrong
- Spend time in the lab and play around with detectors/electronics. A scope is your friend!
- Get out of your comfort zone and try to get some hands on experience with detector systems from other colleagues/groups