Type la supernovae

white dwarf accreted matter and grows beyond the Chandrasekhar limit

→ star explodes – no remnant

Other possibilities:

- WD-WD merger (total mass can be above Chandrasekhar mass)
- He layer on surface explodes and triggers WD explosion (sub-Chandrasekhar mass)

Discovery rate of type la supernovae

D. Kasen, presentation

Discovery rate of type la supernovae

D. Kasen, presentation

Absolute brightness variations of type la supernovae

Origin of variations?

Timmes, Brown, Truran 2003: 22 Ne \sim Z (why?) (22 Ne has 10 protons and 12 neutrons!) \rightarrow presence of 22 Ne reduces Ye below 0.5 and therefore the amount of 56 Ni produced

Phillips relation:

Decline rate $\Delta m_{15}(B)$: magnitude decline during first 15 days in B-band is related to ABSOLUTE peak brightness M_{max} :

→ Can use type la's as standard candles!

Nucleosynthesis contribution from type la supernovae

CO or ONeMg core ignites and burns to a large extent into NSE

- → Has to be consistent with solar abundances
- → Nucleosynthesis is a prime constraint for models

Sensitivity of type la supernova nucleosynthesis

Different models: 5 bubbles/30 bubbles

Different nuclear models for EC rates

Nucleosynthesis is one important diagnostic tool for SN type la models

- → Need experimental EC rates to use it
- → EC rates might also matter directly in explosion (currently explored)
- → EC rates are also an ingredient for core collapse SN models