The origin of heavy elements in the solar system

each process contribution is a mix of many events!

The sites of the s-process

The weak s-process

Site: Core He burning (and shell C-burning) in massive stars (e.g. 25 solar masses)

Towards the end of He burning T~3e8 K: 22 Ne(α ,n) provides a neutron source

preexisting Fe (and other nuclei) serve as seed for a (secondary) s-process

The weak s-process (A < 90)

Site: Core He burning (and shell C-burning) in massive stars (e.g. 25 solar masses)

- Not all ²²Ne consumed during He burning
- ²²Ne(α,n) reactivated during C-shell burning

$$^{12}C+^{12}C \rightarrow ^{20}Ne + ^{4}He$$

About equal contribution to weak s-process from core He and shell C burning

What about core C burning?

Typical conditions (Raiteri et al. ApJ367 (1991) 228 and ApJ371(1991)665:

Temperature	2.2 - 3.5 e8 K
Density	1 - 3e3 g/cm ³
Average neutron density	7e5 cm ⁻³
Peak neutron density	2e7 cm ⁻³
Neutron exposure τ *)	0.206 / mb

^{*)} time integrated neutron flux

$$\tau = \int j_n(t)dt$$

At end of He burning

(Pignatari et al. 2010)

The main s-process (A>90)

Site: low mass TP-AGB stars

(thermally pulsing stars on the asymptotic giant branch in the HR diagram, 1.5 - 3 solar masses)

From R. Gallino

H/He burning in a TP-AGB star

- number of He flashes in stars life: few 100
- period of flashes: 1000 100,000 years

Main s-process in TP-AGB Stars step by step:

1.Convective He shell flash

- 1. Initiates He shell burning
- 2. Triggers convection zone that includes He and H shells
 - 1. Mixes He burning products (12C) throughout the He burning shell
 - 2. Extinguishes H shell burning for brief period
- **2.3**rd **dredge up:** After end of He flash and cooling, with H-shell extinguished, outer H-rich convection zone penetrates deeper than before
 - 1. At boundary of H-envelope and He-burning shell ingestion of H into He-shell
 - 2. $^{12}\text{C+p} \rightarrow ^{13}\text{N} \beta + \rightarrow ^{13}\text{C}$ creates a ^{13}C pocket (extent of overlap of previous He convection zone and H convection zone, which then retracts again)
- **3.He-shell burning:** s-process in ¹³C pocket for 10,000 100,000 years
 - 1. During He shell burning in hot He intershell, 13 C pocket produces s-process via 13 C(α ,n) neutron source
- **4.H-shell burning** (re-starts a bit later than He-shell burning once envelope has retracted)
 - 1. Produces ¹⁴N via CNO cycle

5.Next He flash

- 1. Mixes s-process products, He burning products (12C), and H-burning products (14N)
- 2. ¹⁴N is converted into ²²Ne (see weak s-process) and ²²Ne(α,n) neutron source is briefly activated leading to some "touchup" of the s-process abundances especially at branchings

6.Next 3rd dredge up

1. Mixes s-process products to the surface

Conditions during the main s-process

	¹³ C(α,n) in pocket	²² Ne(α,n) in He flash
Temperature	$0.9 \times 10^8 \text{ K}$	$2.7 \times 10^8 \mathrm{K}$
Neutron density	$7 \times 10^7 \text{ cm}^{-3}$	10 ¹⁰ cm ⁻³
Duration	20,000 yr	few years
Neutron exposure τ *)	0.1 / mb	0.01 / mb

weaker but longer main contribution (90% of exposure)

short, intense burst slight modification of abundances (branchings!)

Results for main s-process model

Grains from AGB stars

Fig. 3.—Comparison of double-peaked observed astronomical feature in the continuum-divided spectrum of Y CVn (*filled circles*) with laboratory spectrum of amorphous SiC (*solid line*).

NGC 6543

HST · WFPC2

PR95-01a · ST Sci OPO · January 1995 · P. Harrington (U.MD), NASA

12/13/94 zgl

Zr in the s-process

