The origin of heavy elements in the solar system

each process contribution is a mix of many events ! 1

But: sun formed ~10 billion years after big bang: many stars contributed to elements

 \rightarrow This could be an accidental combination of many different "fingerprints" ?

 \rightarrow Find a star that is much older than the sun to find "fingerprint" of single event

Heavy elements in Metal Poor Halo Stars

CS22892-052 red (K) giant located in halo distance: 4.7 kpc mass ~0.8 M_sol [Fe/H]= -3.0 [Dy/Fe]= +1.7

old stars - formed before Galaxy was mixed
 they preserve local pollution from individual nucleosynthesis events

A single (or a few) r-process event(s)

 → A new process contributing to Y, Sr, Zr (early Galaxy only? Solar? In this case: some traditional "r-contributions" to solar are not (main) r-process)
 → Call it LEPP (Light Element Primary Process)

Overview heavy element nucleosynthesis

process	conditions	timescale	site
s-process (n-capture,)	T~ 0.1 GK τ _n ~ 1-1000 yr, n _n ~10 ⁷⁻ ⁸ /cm ³	10 ² yr and 10 ⁵⁻⁶ yrs	Massive stars (weak) Low mass AGB stars (main)
r-process (n-capture,)	T~1-2 GK τ _n ~ μs, n _n ~10 ²⁴ /cm ³	< 1s	Core collapse supernovae ? Neutron Star Mergers ?
p-process ((γ,n),)	T~2-3 GK	~1s	Core collapse supernovae ? Type la supernovae?
Light Element Primary Process (LEPP) ? Weak r-process? Failed r-process? vp-process? Primary s-process?	?	?	?

The r-process

Waiting point approximation

Definition: **ASSUME** (n,γ) - (γ,n) equilibrium within isotopic chain

How good is the approximation ?

This is a valid assumption during most of the r-process

BUT: freezeout is neglected

Freiburghaus et al. ApJ 516 (2999) 381 showed agreement with dynamical models

Consequences

During (n,γ) - (γ,n) equilibrium abundances within an isotopic chain are given by:

$$\frac{Y(Z,A+1)}{Y(Z,A)} = n_n \frac{G(Z,A+1)}{2G(Z,A)} \left[\frac{A+1}{A} \frac{2\pi\hbar^2}{m_u kT}\right]^{3/2} \exp(S_n / kT)$$

• time independent

- can treat whole chain as a single nucleus in network
- only slow beta decays need to be calculated dynamically

neutron capture rate independent

(therefore: during most of the r-process n-capture rates do not matter !) ⁹

Waiting point approximation continued

In the approximation of continuous S_n and abundances Y the maximum abundance in an isotopic chain occurs for

$$\frac{Y(Z,A+1)}{Y(Z,A)} = 1$$

For a given temperature and neutron density one can solve for S_n (assuming A~A+1 and G=1)

$$S_{n} = kT \ln \left(\frac{2}{n_{n}} \left[\frac{m_{u}kT}{2\pi\hbar^{2}}\right]^{3/2}\right)$$
$$S_{n} = \frac{T_{9}}{11.604} \left[\frac{3}{2}\ln(T_{9}) - \ln(n_{n}) + 78.460\right] \text{ in MeV}$$

 \rightarrow r-process runs at fixed neutron separation energy (for given condition)

Contains information about:

- n-density, T, time (fission signatures)
- freezeout
- neutrino presence
- which model is correct

But convoluted with nuclear physics:

- masses (set path)
- T_{1/2}, Pn (Y ~ T_{1/2(prog)}, key waiting points set timescale)
- n-capture rates
- fission barriers and fragments

JINA

Shell quenching effect on masses/r-process

JINA

Shell quenching effect on masses/r-process

Endpoint of the r-process

Consequences of fission

Note: the exact endpoint of the r-process and the degree and impact of fission are unknown because:

- Site conditions not known is n/seed ratio large enough to reach fission ? (or even large enough for fission cycling ?)
- Fission barriers highly uncertain
- Fission fragment distributions not reliably calculated so far (for fission from excited states !)

Role of beta delayed neutron emission

Neutron rich nuclei can emit one or more neutrons during β -decay if $S_n < Q_\beta$ (the more neutron rich, the lower S_n and the higher Q_β)

If some fraction of decay goes above S_n in daughter nucleus then some fraction P_n of the decays will emit a neutron (in addition to e⁻ and v)

(generally, neutron emission competes favorably with γ -decay - strong interaction !)

Effects: <u>during r-process</u>: none as neutrons get recaptured quickly <u>during freezeout</u> • modification of final abundance • late time neutron production (those get recaptured)

Calculated r-process production of elements (Kratz et al. ApJ 403 (1993) 216):

before β -decay

after β -decay

smoothing effect from β-delayed n emission ! 19

Summary: Nuclear physics in the r-process

Quantity		Effect
S _n	neutron separation energy	path
T _{1/2}	β-decay half-lives	 abundance pattern timescale
P _n	β-delayed n-emission branchings	final abundance pattern
fission (branchings and products)		 endpoint abundance pattern? degree of fission cycling
G	partition functions	 path (very weakly)
N _A <σv>	neutron capture rates	 final abundance pattern during freezeout ? conditions for waiting point approximation

National Superconducting Cyclotron Laboratory at Michigan State University

New Coupled Cyclotron Facility – experiments since mid 2001

Fast beam fragmentation facility – allows event by event particle identification

First r-process experiments at new NSCL CCF facility (June 02)

Measure:

- β -decay half-lives
- Branchings for β -delayed n-emission

Detect:

- Particle type (TOF, dE, p)
- Implantation time and location
- \bullet $\beta\text{-emission}$ time and location
- neutron- β coincidences

New NSCL Neutron detector NERO

NSCL BCS – Beta Counting System

- 4 cm x 4 cm active area
- 1 mm thick
- 40-strip pitch in x and y dimensions ->1600 pixels

NERO – Neutron Emission Ratio Observer

shielding

Polyethylene Moderator

Boron Carbide Shielding

The Joint Institute for Nuclear Astrophysics

NERO Assembly

Particle Identification

Results for the main goal: ⁷⁸Ni (14 neutrons added to stable Ni)

Decay of ⁷⁸Ni : major bottle-neck for synthesis of heavy elements in the r-process Managed to create 11 of the doubly magic ⁷⁸Ni nuclei in ~ 5 days

 \rightarrow Acceleration of the entire r-process

 \rightarrow Models need to be adjusted to explain observed abundance distribution

The Joint Institute for Nuclear Astrophysics

Impact of ⁷⁸Ni half-life on r-process models

 \rightarrow need to readjust r-process model parameters

- →Can obtain Experimental constraints for r-process models from observations and solid nuclear physics
- → remainig discrepancies nuclear physics ? Environment ? Neutrinos ? Need more data

H. Schatz

G

Penning Trap Mass Meausrements (stopped beams)

Example: TRIGA Penning Trap (Mainz)

Rare Isotope Production Techniques: Uniqueness of FRIB

Target spallation and fragmentation by light ions (ISOLDE/HRIBF/TRIUMF)

Fission yields

SPIRAL2 projected production

U.S. Department of Energy Office of Science National Science Foundation Michigan State University

Hendrik Schatz, NNPSS 2012 Slide 41

NSCL and FRIB Laboratory

506 employees, incl. 36 faculty, 59 graduate and 71 undergraduate students (as of August 6, 2012) NSCL user group is part of the FRIB User Organization (over 1,250 members)

FRIB will be the world's premier rare isotope user facility, a national user facility for the U.S. Department of Energy Office of Science

Enabling over 1250 users to do world-leading rare-isotope science

FRIB Layout example: nuclear astrophysics experiment

Overview of the FRIB Facility

Facility for Rare Isotope Beams U.S. Department of Energy Office of Science Michigan State University

FRIB

Rendered Perspective Southeast View

Facility for Rare Isotope Beams U.S. Department of Energy Office of Science Michigan State University

Sherrill NN2012

Driver Linear Accelerator

Overview FRIB Reaccelerators, and Experimental Stations

U.S. Department of Energy Office of Science Michigan State University

FRIB On Track, Moving Toward Construction

- Project Start
- Conceptual design
- Preliminary design
 CD-2/3A (civil) review in April 2012
- Site prep
 - DOE approves pilings for earth ret.
- Civil construction begins
 - Pending DOE approval
- Final design
 - CD-3B (technical) review in 2013

Facility for Rare Isotope Beams

Energy Office of Science

- Technical construction begins
- Early project completion
- Total project cost

6/2009 completed 9/2010 (CD-1) 2010-2012 2012 ~140M committed 2012 2012-2013 2013 2019 (completion 2021) \$680M (\$585 Federal)

NSCL/FRIB current view

Why is it called FRIB ???

1. frib 17 up, 6 down_

birf spelled backwards

2. frib 4 up, 12 down_

A word that can be used to describe happiness, joy etc. Commonly replaces 'wow', 'cool' or 'great'.

FRIB: a key instrument for nuclear astrophysics

Rare isotopes are common in many astrophysical scenarios FRIB is critical to address a broad range of astrophysics questions

MICHIGAN STATE

Overview of common r process models

• Site independent models:

- [n_n, T, t parametrization (neutron density, temperature, irradiation time)]
- S, Y_e, t parametrization (Entropy, electron fraction, expansion timescale)
- Core collapse supernovae
 - Neutrino wind
 - Jets
 - Explosive helium burning
- Neutron star mergers

The Joint Institute for Nuclear Astrophysics

A star ready to die

Neutron star forms (size ~ 10 km radius)

Matter evaporated off the hot neutron star r-process site ?

How does the r-process work ? Neutron capture !

<u>S, Y_e, τ parametrization</u>

- 1. Consider a blob of matter with entropy S, electron abundance Y_e in NSE
- 2. Expand adiabatically with expansion timescale τ
- 3. Calculate abundances what will happen:
 - 1. NSE
 - **2. QSE** (2 clusters: p,n,α and heavy nuclei)
 - 3. α-rich freezeout (for higher S)
 (3a and aan reactions slowly move matter from p,n,α cluster to heavier nuclei once a heavy nucleus is created it rapidly captures a-particles

as a result large amounts of A~90-100 nuclei are produce which serve as seed for the r-process

4. r-process phase

initially: $n, \gamma - \gamma, n$ equilibrium later: freezeout

Evolution of equilibria:

cross : most abundant nucleus colors: degree of equilibrium with that nucleus (difference in chemical potential)

Results for neutron to seed ratios: (Meyer & Brown ApJS112(1997)199)

n/seed is higher for

• lower Y_e (more neutrons)

• higher entropy

(more light particles, less heavy nuclei – less seeds) (or: low density – low 3a rate – slow seed assembly)

faster expansion

(less time to assemble seeds)

→ <u>2 possible scenarios:</u>
 1) high S, moderate Y_e

r-process in Supernovae ?

High entropy neutrino driven wind:

Neutrino heated wind evaporating from proto neutron star in core collapse

Results for Supernova r-process

Takahashi, Witti, & Janka A&A 286(1994)857

(for latest treatment of this scenario see Thompson, Burrows, Meyer ApJ 562 (2001) 887)

other problem: the α effect

- We now have several robust, rather self-consistent r-process models
- To test them against observations \rightarrow Need nuclear data now!
- Goal: reveal model deficiencies and site physics signatures

Ejection of matter in NS-mergers

Rosswog et al. A&A 341 (1999) 499

63

r-process in NS-mergers

Summary theoretical scenarios

	NS-mergers	Supernovae
Frequency (per yr and Galaxy)	1e-5 - 1e-4	2.2e-2
Ejected r-process mass (solar masses)	4e-3 – 4e-2	1e-6 – 1e-5
Summary	less frequent but more ejection	more frequent and less ejection

Argast et al. A&A 416 (2004) 997

 \rightarrow Neutron Star Mergers ruled out as major contributor