The rapid proton capture process (rp-process)

Sites of the rp-process This lecture

Novae

- "r"p-process (not really a full rp-process)
- makes maybe
 ²⁶AI

v-wind in supernovae ?

•makes maybe ⁴⁵Sc and ⁴⁹Ti

if n accelerated
 (v interactions)
 maybe a major
 nucleosynthesis
 process?

X-ray binaries

KS 1731-260 with Chandra

- full rp-process
- unlikely to contribute to nucleosynthesis

Cosmic X-rays: discovered end of 1960's:

0.5-5 keV (T=E/k=6-60 x 10⁶ K)

Nobel Price in Physics 2002 for Riccardo Giacconi

TIME (SEC)

Today:

 \sim 70 burst sources out of 160 LMXB' s

Total ~230 X-ray binaries known

The Joint Institute for Nuclear Astrophysics

Z

JIN

Burst characteristics

Fig. 3.14. (a) Example of a very regular burst recurrence pattern, observed for 1820-303 (from Haberl et al. 1987). (b) Integular burst recurrence, observed from 1636-536 (from Sztajno et al. 1985).

Typical X-ray bursts:

- 10³⁶-10³⁸ erg/s
- duration 10 s 100s
- recurrence: hours-days
- regular or irregular

Frequent and very bright phenomenon !

 $(\text{stars } 10^{33} \text{--} 10^{35} \text{ erg/s})$

The model

Neutron stars: 1.4 M_0 , 10 km radius (average density: ~ 10¹⁴ g/cm³)

Neutron Star

Donor Star ("normal" star)

Accretion Disk

Typical systems:

- accretion rate 10⁻⁸/10⁻¹⁰ M₀/yr (0.5-50 kg/s/cm²)
- orbital periods 0.01-100 days
- orbital separations 0.001-1 AU's

JINA

Energy sources

Ratio gravitation/thermonuclear ~ 30 - 40 (called α)

Unstable, explosive burning in bursts (release over short time)

BUT: energy release dominated by subsequent reactions !

High local accretion rates due to magnetic funneling of material on small surface area

http://www.gsfc.nasa.gov/topstory/2003/0702pulsarspeed.html

http://www.gsfc.nasa.gov/topstory/2003/0702pulsarspeed.html

Golden Age for X-ray Astronomy ?

Constellation X

Chandra

XMM Newton

H. Schatz

New era of precision astrophysics

Precision X-ray observations

JINA

Uncertain models due to nuclear physics

Woosley et al. 2003 astro/ph 0307425

But only with precision nuclear physics

accretion rate: ~10 kg/s/cm²

 \rightarrow Accreted matter is incorporated deeper into the neutron star

 \rightarrow As the density increases interesting things happen

Figure 3.3: From left to right (solid line): $y = 2.1 \times 10^{6} \text{g/cm}^{2}$ (surface), $y = 9.5 \times 10^{6} \text{g/cm}^{2}$ (top of the convective region), $y = 1.9 \times 10^{7} \text{g/cm}^{2}$, $y = 3.3 \times 10^{7} \text{g/cm}^{2}$ (bottom of the convective region), $y = 6.2 \times 10^{7} \text{g/cm}^{2}$ (above ignition), $y = 8.3 \times 10^{7} \text{g/cm}^{2}$ (ignition point), and $y = 1.1 \times 10^{8} \text{g/cm}^{2}$ (ocean). The dashed line indicate the region which is convective during the rising of the burst.

14
$$I_{27Si}$$
 (α, p) (α, p)
 $2^{7}Si$ (β^+) I_{3} neutron number
13 neutron number
Lines = Flow = $F_{i,j} = \int \left[\frac{dY_i}{dt} - \frac{dY_j}{dt} \right] dt$

Burst Ignition:

Competition between α p- & rp- processes

Development of Cycles

This is the ZnGa cycle

●⁵⁶Ni is doubly magic

●⁵⁹Cu is branch point

•Either rp-continues

•or (p, α) back to ⁵⁶Ni

<u>Cycle 1 rxns</u> •⁵⁷Cu(p,γ)⁵⁸Zn •⁵⁹Cu(p,γ)⁶⁰Zn •⁵⁹Cu(p,α)⁵⁶Ni

<u>**Cycle 2 rxns**</u> • 61 Ga(p, γ) 62 Ge • 63 Ga(p, γ) 64 Ge The Joint Institute for Nuclear Astrophysics

 \triangleleft

J || N

\rightarrow abundance accumulation (steady flow approximation $\lambda Y=const$ or $Y \sim 1/\lambda$)	Slow reactions	 → extend energy generation → abundance accumulation (steady flow approximation λY=const or Y ~ 1/λ)
---	----------------	---

Critical "wating points" can be easily identified in abundance movie

Z

JIN

The bursting pulsar

(rotational decoupling ? Surface pulsation modes ?)

The Joint Institute for Nuclear Astrophysics

Open question II: ignition and flame propagation

Anatoly Spitkovsky (Berkeley)

JIN

Open question III: burst behavior at large accretion rates

Cornelisse et al. 2003

.] | N

Open question IV: superbursts

Open question V: abundance observations ?

The Joint Institute for Nuclear Astrophysics

