
Introduction to stellar reaction ratesIntroduction to stellar reaction rates
Nuclear reactions

• generate energy
• create new isotopes and elements

Notation for stellar rates:
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(adapted from traditional laboratory experiments with a target and a beam)



Typical reactions in nuclear astrophysics:Typical reactions in nuclear astrophysics:
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cross section cross section 
bombard target nuclei with projectiles:bombard target nuclei with projectiles:

relative velocity v

Definition of cross section:Definition of cross section:

# of reactions                                     =         . # of incoming projectiles
per second and target nucleus                                 per second and cm2

or in symbols:  =  j with j as particle number current density.
Of course j = n v  with particle number density n)

Units for cross section:Units for cross section:Units for cross section:Units for cross section:

1 barn = 10-24 cm2 ( = 100 fm2 or about half the size (cross sectional area) of a 
uranium nucleus)



Reaction rate in stellar environmentReaction rate in stellar environment
Mix of (fully ionized) projectiles and target nuclei at a temperature T

Reaction rate for relative velocity vReaction rate for relative velocity v
in volume V with projectile number density np
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for most practical applications (for example in stars) projectile and target nuclei
are always in thermal equilibrium and follow a MaxwellMaxwell BolzmannBolzmann velocity

Relative velocities in stars: Maxwell Boltzmann distributionRelative velocities in stars: Maxwell Boltzmann distribution

are always in thermal equilibrium and follow a MaxwellMaxwell--BolzmannBolzmann velocity 
distribution:

then the probability (v) to find a particle with a velocity between v and v+dv is

kT2
v

2
2/3 2

e
2

4)(
m

v
kT

mv













   1)( dvvwith



3

4

example: in terms
of energy axis

2

3

tra
ry

 u
ni

ts

of energy axis
E=1/2 m v2Max

velocity
corresponds

1

ar
bi

t p
To E=kT

0 20 40 60 80
energy (keV)

0



one can show (Clayton Pg 294-295) that the relativerelative velocities between two particles
are distributed the same way: 
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the stellar reaction rate has to be averaged over the distribution (v)
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expressed in terms abundances
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this is usually referred to 
as the stellar reaction ratestellar reaction rate
of a specific reaction

units of stellar reaction rate NA<sv>: usually cm3/s/mole though in factunits of stellar reaction rate NA sv : usually cm /s/mole, though in fact
cm3/s/g would be better (and is needed to verify dimensions of equations)

(Y does not have a unit)



Abundance changes, lifetimes, networksAbundance changes, lifetimes, networks
Lets assume the only reaction that involves nuclei A and B is destruction
( d ti ) f A (B) b A t i th j til(production) of A (B) by A capturing the projectile a:

A + a -> B
A d l t th ti t i t t tiAnd lets assume the reaction rate is constant over time.

This is a very simple reaction network:

A B

Each isotope is a node that is linked to other isotopes through production
and destruction channels

Starting from an initial abundance we can then ask how the abundanceStarting from an initial abundance, we can then ask, how the abundance 
of each network node evolves over time

Typically the same light projectiles drive most of the reactions (neutron or 
) d ’ d ll i d i h lproton capture) so we don’t enter p, n and all its destruction channels

into the graphics but understand that they get produced and destroyed as well)



We can write down a set of differential equations for each abundance change
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Assuming, the reaction rate is constant in time, this case can be solved easily
(same as decay law):( y )
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and of course

after some time, nucleus A
is entirely converted to nucleus B
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Lifetime of A (against destruction via the reaction A+a) :Lifetime of A (against destruction via the reaction A+a) :
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(of course half-life of A T1/2=ln2/



Energy generation through a specific reaction:Energy generation through a specific reaction:

Reaction QReaction Q--value:value: Energy generated (if >0) by a single reaction

in general, for any reaction (sequence) with nuclear masses m:
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(remember positron emission almost always leads to an additional

(1 erg  1E 7 Joule)

(remember, positron emission almost always leads to an additional 
energy release by the subsequent annihilation process (2 x .511 MeV))



Reaction flowReaction flow
abundance of nuclei of species A converted in time in time interval [t1 t2] intoabundance of nuclei of species A converted in time in time interval [t1,t2] into
species B via a specific reaction AB is called reaction flow
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For Net reaction flow subtract the flow via the inverse of that specific reaction
(this is what is often plotted in the network connecting the nodes)

net A B A B B AF F F   

(Sometimes the reaction flow is also called reaction flux)

In our example, at infinite time A has been converted entirely into B. Therefore
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Multiple reactions destroying a nuclideMultiple reactions destroying a nuclide
14

example: in the CNO cycle, 13N 
can either capture a proton or  decay.
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the reaction flow branching into reaction i, bi is the fraction of destructive flow
through reaction i. (or the fraction of nuclei destroyed via reaction i)
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General reaction networkGeneral reaction network
A set of n isotopes with abundances Yi,

Consider 1- and 2-body rates only
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Note that this depends on mass density  and temperature (through <v> and ) so 
this requires input from a stellar model.

Needs to be solved numerically. This is not trivial as system is very stiff
(reaction rate timescales vary by many many orders of magnitude)



Example for a more complex networkExample for a more complex network
(rp process in X ray bursts)(rp-process in X-ray bursts)

Mass known < 10 keV

Mass known > 10 keV

Only half-life known

seen

Figure: Schatz&Rehm, Nucl. Phys. A, 


