Introduction to stellar reaction rates

Nuclear reactions
* generate energy
e create new isotopes and elements

Notation for stellar rates:
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(adapted from traditional laboratory experiments with a target and a beam)



Typical reactions in nuclear astrophysics:
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Cross section o

bombard target nuclei with projectiles:

o O
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Definition of cross section:

# of reactions = c .« #ofincoming projectiles
per second and target nucleus per second and cm?
or in symbols: = Gj with | as particle number current density.
' Of course j = n v with particle number density n)

Units for cross section:

1 barn = 1024 cm? ( = 100 fm? or about half the size (cross sectional area) of a
uranium nucleus)



Reaction rate in stellar environment

Mix of (fully ionized) projectiles and target nuclei at a temperature T

Reaction rate for relative velocity v

in volume V with projectile number density n,
A=onyV

R=0c anHTV Reactions per second

so for reaction rate per second and cm3: =10 ) n.oVv

This is proportional to the number of p-T pairs in the volume.,
If projectile and target are identical, one has to divide by 2 to avoid double counting

n(n—-1) n

as there are 5 — pairs per volume, therefore




Relative velocities in stars: Maxwell Boltzmann distribution

for most practical applications (for example in stars) projectile and target nuclei
are always in thermal equilibrium and follow a Maxwell-Bolzmann velocity
distribution:

then the probability ®(v) to find a particle with a velocity between v and v+dv is
3/2 my2
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one can show (Clayton Pg 294-295) that the relative velocities between two particles
are distributed the same way:

I 3/2 11V
, —t—
OV)=4r| —— | vie
2 KT
with the mass m replaced by the reduced mass u of the 2 particle system
m.m
L= 11112
m, +m,

the stellar reaction rate has to be averaged over the distribution ®(v)
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P \ typical strong
1 velocity dependence !
or short hand: I ﬂpn-l- <oV >
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expressed in terms abundances

1 2 N2
I = YTYp,O N’ <ov> reactions per s and cm?3
1+0;
p
1 |
A= Ypp NA <oV > reactions per s and target
1+ 5pT . ) nucleus
Y
this is usually referred to
as the stellar reaction rate
of a specific reaction

units of stellar reaction rate N,<sv>: usually cm3/s/mole, though in fact
cm3/s/g would be better (and is needed to verify dimensions of equations)

(Y does not have a unit)



Abundance changes, lifetimes, networks

Lets assume the only reaction that involves nuclei A and B is destruction
(production) of A (B) by A capturing the projectile a:

A+a->B

And lets assume the reaction rate is constant over time.

This is a very simple reaction network:

oy,

A

Each isotope is a node that is linked to other isotopes through production
and destruction channels

Starting from an initial abundance, we can then ask, how the abundance
of each network node evolves over time

Typically the same light projectiles drive most of the reactions (neutron or
proton capture) so we don’t enter p, n and all its destruction channels
into the graphics but understand that they get produced and destroyed as well)



We can write down a set of differential equations for each abundance change

dCTtA =-n,A=-nY,pN,<oVv>
dng =+n,A
dt

Assuming, the reaction rate is constant in time, this case can be solved easily
(same as decay law):

nA(t) = Nya e "
nB(t) — nOA(l_e_M)



and of course
—At
Ya() =Yoae -
after some time, nucleus A

—At IS entirely converted to nucleus B
YB (t) :YOA(l_e ) g
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(of course half-life of A T,,=In2/))



Energy generation through a specific reaction:

Reaction Q-value: Energy generated (if >0) by a single reaction

In general, for any reaction (sequence) with nuclear masses m:

Q=C2[ > om- ij}

initial nuclei final nuclei j

Energy generation: Energy generated per g and second by a reaction A+a:

FQ 1 Unit in CGS: erg
g=—=0Q YAYaION,ZA <oV> (Lerg=1E-7 Joule)
Jo, 1+0,,

(remember, positron emission almost always leads to an additional
energy release by the subsequent annihilation process (2 x .511 MeV))



Reaction flow

abundance of nuclei of species A converted in time in time interval [t1,t2] into
species B via a specific reaction A2 B is called reaction flow

dy,
t

t, t,
FA—)B — j g dt = _“ﬂ‘A—>B (t)YA (t)dt
1:1 1:1

A—B

For Net reaction flow subtract the flow via the inverse of that specific reaction
(this is what is often plotted in the network connecting the nodes)

FnetA—>B — A ™ FB—)A

(Sometimes the reaction flow is also called reaction flux)

In our example, at infinite time A has been converted entirely into B. Therefore

Foet AssB (t >0)=Y,(t=0)



Multiple reactions destroying a nuclide

140
example: in the CNO cycle, 13N
can either capture a proton or 3 decay. I (p,y)
each destructive reaction i has a rate A, N (8*)
Total lifetime 130

the total destruction rate for the nucleus is then A = Zﬂ“i
1 1 !

its total lifetime 7 =— =

/I_Z/%i

Branching

the reaction flow branching into reaction i, b, is the fraction of destructive flow
through reaction i. (or the fraction of nuclei destroyed via reaction i)



General reaction network

A set of n isotopes with abundances Y,
Consider 1- and 2-body rates only

in roduction
at = ZijYkIONA SOV > +IZ/1|—>iY| product
b

destruction
o ZYIYmION pn <OV >im—>any +Zﬂ’i—>nYi
. m n

Note that this depends on mass density p and temperature (through <ev> and 1) so
this requires input from a stellar model.

Needs to be solved numerically. This is not trivial as system is very stiff
(reaction rate timescales vary by many many orders of magnitude)
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