Neutron Star

Saturation density $\rho_0 \sim 3x10^{14}\,g/cm^3$

$ ho_{ m max}$ [g cm $^{-3}$]	Element	Z	Ν	R_{cell} [fm]
8.02×10^6	⁵⁶ Fe	26	30	1404.05
2.71×10^8	⁶² Ni	28	34	449.48
1.33×10^9	⁶⁴ Ni	28	36	266.97
1.50×10^9	⁶⁶ Ni	28	38	259.26
3.09×10^9	⁸⁶ Kr	36	50	222.66
1.06×10^{10}	⁸⁴ Se	34	50	146.56
2.79×10^{10}	⁸² Ge	32	50	105.23
6.07×10^{10}	⁸⁰ Zn	30	50	80.58
8.46×10^{10}	⁸² Zn	30	52	72.77
9.67×10^{10}	¹²⁸ Pd	46	82	80.77
1.47×10^{11}	¹²⁶ Ru	44	82	69.81
$\textbf{2.11} \times \textbf{10}^{\textbf{11}}$	¹²⁴ Mo	42	82	61.71
2.89×10^{11}	¹²² Zr	40	82	55.22
3.97×10^{11}	¹²⁰ Sr	38	82	49.37
$\textbf{4.27} \times \textbf{10}^{11}$	¹¹⁸ Kr	36	82	47.92

For inner crust: composition "beyond neutron drip" \rightarrow mix of neutrons and nuclei Drip density: ~4 x 10¹¹ g/cm³

An isolated neutron star seen with HST:

Its estimated that there are ~100's of millions of neutron stars in our Galaxy

Supernova remants – neutron stars

Grad student Jocelyn Bell: Discovery of Pulsars

(Cambridge, England)

Anthony Hewish won the Nobel Prize in 1974

http://www.bigear.org/vol1no1/burnell.htm

http://www.aip.org/history/mod/pulsar/pulsar1/01.html

Some interesting lessons learned

After the first few hundred feet of chart analysis I could recognize the scintillating sources, and I could recognize interference. (Radio telescopes are very sensitive instruments, and it takes little radio interference from nearby on earth to swamp the cosmic signals; unfortunately, this is a feature of all radio astronomy.) Six or eight weeks after starting the survey I became aware that on occasions there was a bit of "scruff' on the records, which did not look exactly like a scintillating source, and yet did not look exactly like man-made interference either. Furthermore I realized that this scruff had

- Always look at the raw data
- Followup on everything you don't understand

They were 11/3 seconds apart. I contacted Tony Hewish who was teaching in an undergraduate laboratory in Cambridge, and his first reaction was that they must be manmade. This was a very sensible response in the circumstances, but due to a truly remarkable depth of ignorance I did not see why they could not be from a star. However he was interested enough to

• Never (blindly) believe your advisor

Neutron star:

Typical mass: 1.4 solar masses

Demorest et al. 2012: 1.97 +- 0.04 solar masses

What is maximum ???

Quiescent Low Mass X-ray Binary (here KS1731-260)

Stefan;s Law:

$$L = 4\pi R^2 \sigma T_{\text{eff}}^4$$

Measure L (distance) T_{eff} from spectrum \rightarrow Get R

"Black body like" spectra

The Radius of Neutron Stars

Figure 68: Redshifted surface temperatures (as seen by an observer at infinity) vs. age of neutron stars with different masses as compared with observation. Dot-dashed curves are calculated with only proton superfluidity in the core. Solid curves also include neutron superfluidity in the crust and outer core [428].

Neutron star cooling Chamel & Haensel

- 1. Neutrons stream freely
- 2. Direct Urca cooling

Proton fraction for EOS with different neutron skin thicknesses in 208Pb