Neutron Star

Typical mass: 1.4 solar masses

Typical total radius: 10 km Gaseous atmosphere ~1 m

/ Liquid ocean ~10 m

outer Crust 0.3-0.5 Km
-— ions, electrons

nnercrust 1-2km

-%—— electrons, neutrons, nuclei

\ ) ]l—"l"'[w‘ -~ Q km

n.é'utrdn-prdton Fermi liquid
few % electron Fermi gas

nner core 0-3 kn

quark gluon plasma?

Saturation density p, ~ 3x10'* g/cm?



Puax [gem™] Element Z N R [fm]

8.02x105 %6Fe 26 30 1404.05
271 x108  ©2Nj 28 34 44948
133 x10°  ©®Ni 28 36 266.97
150 x10°  ©6Nj 28 38 259.26
309 x10° 8Kr 36 50 22266
1.06 x10'0  845e 34 50 146.56
279x10"0  82Ge 32 50 105.23
6.07 x 100  80zn 30 50 80.58

846 x 100  82zn 30 52 7277
967 x10'0 28pd 46 82 80.77
147 x10""  725Ru 44 82 69.81
211x 10" 1Mo 42 82 61.71
289 x 10" 22zr 40 82 5522
397 x10"" 205y 38 82 49.37
427 x10""  18Kr 36 82 47.92




proton number, Z

48 Exp. determined masses
46 - Mstable Hp° WP

Neutron-star outer-crust nuchdes
B known values

W HFB-19 prediction

£ ISOLTRAP measurement

HFB-19

two-neutron dnp line

neutron number, N
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For inner crust: composition “beyond neutron drip” = mix of neutrons and nuclei

Drip density: ~4 x 10" g/cm3

element



An isolated neutron star seen with HST:

lts estimated that there are ~100’ s of millions of neutron stars in our Galaxy 4



Supernova remants — neutron stars

Neutron star
kicked out
with ~600 mi/s

SN remnant Puppis A (Rosat)



Grad student Jocelyn Bell: Discovery of Pulsars
(Cambridge, England) G-
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Anthony Hewish won the Nobel Prize in 1974

http://www.bigear.org/volInol/burnell.htm
http://www.aip.org/history/mod/pulsar/pulsar1/01.html






Some interesting lessons learned

After the first few hundred feet of chart analysis I could recognize the
scintillating sources, and I could recognize interference. (Radio telescopes
are very sensitive instruments, and it takes little radio interference from
nearby on earth to swamp the cosmic signals; unfortunately, this is a feature
of all radio astronomy.) Six or eight weeks after starting the survey I became
aware that on occasions there was a bit of "scruff' on the records, which did
not look exactly like a scintillating source, and yet did not look exactly like
man-made interference either. Furthermore I realized that this scruff had

* Always look at the raw data
* Followup on everything you don’t understand



They were 11/3 seconds apart. I contacted Tony Hewish who was teaching
in an undergraduate laboratory in Cambridge, and his first reaction was that
they must be manmade. This was a very sensible response in the
circumstances, but due to a truly remarkable depth of ignorance I did not see
why they could not be from a star. However he was interested enough to

* Never (blindly) believe your advisor
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Neutron star:
Typical mass: 1.4 solar masses
Demorest et al. 2012: 1.97 +- 0.04 solar masses

What is maximum ??7?
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Quiescent Low Mass X-ray Binary
(here KS1731-260)

“Black body like” spectra

Stefan;s Law:

L =4nR°0T.
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The Radius of Neutron Stars

8 10 12
Rns (km)

- Guillot et al. 2013
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Figure 68: Redshifted surface temperatures (as seen by an observer at infinity) vs. age of
neutron stars with different masses as compared with observation. Dot-dashed curves are
calculated with only proton superfluidity in the core. Solid curves also include neutron
superfluidity in the crust and outer core [428].

Neutron star cooling

Chamel & Haensel
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1. Neutrons stream freely
2. Direct Urca cooling
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