
1. Mass Excesses and Binding Energies

The Periodic chart of Elements is a useful graphical presentation of the elements of
nature. The elements are identified via the number of electrons in the neutral atom.
(Z) which corresponds to the element name (e.g. Hydrogen [H] has Z = 1, Helium [He]
has Z = 2 and Iron [Fe] has Z = 26). The atoms of an element consist of Z- electrons
orbiting a nucleus with charge +Z. The nucleus is made of protons and neutrons. Since
neutrons have no charge and protons +1 charge, there are Z-protons. A single element
can have more than one isotope; when the number of protons is fixed, but the number
of neutrons varies from isotope to isotope. The natural abundance of the element
hydrogen is dominated by the isotope 1H, with smaller quantities of heavy hydrogen (or
deuterium) 2H. The number in this notation is the associated mass number, it is the sum
of the number of protons and neutrons. The element hydrogen has 1 proton, thus 1H
has 0 neutrons and 2H has 1 neutron. One can see that the Periodic chart of Elements is
not adequate to graphically show this richness of nuclei, thus we create what is known
as a chart of nuclides, a graphical representation of nuclei. The chart is organized
with the number of neutrons (N) situated on the horizontal axis and the number of
protons (Z) on the vertical axis. Please visit the National Nuclear Data Center’s chart
of nuclides to get familiar with the chart (http://www.nndc.bnl.gov/chart/).

You may recall that in atomic physics, we use carbon to define a mass scale. The
so-called atomic mass unit (mu). This provides a convenient mass scale that we can
use to estimate the mass of an atom.

M(Z,N) ≈ (Z +N)mu (1)

Since the mass of the atom is dominated by the nucleus (i.e. mu ∼ Mp ∼ Mn), a better
guess of the mass is simply the sum of the constituent masses; the sum of the electron,
proton and neutron masses:

M(Z,N) ≈ ZMH +NMn ≈ Z(Mp +Me) +NMn (2)

The masses listed in the periodic table are in fact in terms of the atomic mass unit
(e.g. A(Z,N) = M(Z,N)/mu). One can use the values in the periodic table to define
the “excess” mass in the nuclide.

∆(Z,N) ≡ M(Z,N)− (Z +N)mu (3)

One can also define a nuclear binding energy, the difference between the actual mass
of an atom and the total mass of the electrons, protons and neutrons in the system
(assumes atomic binding is negligible).

B(Z,N) ≡ ZMH +NMn −M(Z,N) ≈ Z(Mp +Me) +NMn −M(Z,N) (4)
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2. Nuclear Reactions and their Q-values

Nuclear reactions involve the rearrangement of the constituent neutrons and protons
to form new nuclide(s). As in any reactive process there is an energy cost or benefit,
that can enhance or inhibit particular reactions (chemists usually speak in terms of an
enthalpy of reaction). We can calculate the amount of energy released or required for
a reaction, by comparing the total mass (i.e. energy) of the initial and final nuclides
in the reaction. We will define the Q-value to be the energy released in a reaction,
such that it is a positive number for an energetically favored reaction. For simplicity
we will consider binary reactions (i.e. reactions between 2 nuclides).

reaction : = A+B → C +D (5)

MA +MB = MC +MD +Q[A(B,C)D] (6)

Remembering our work from the previous problem, we can substitute the relations for
mass excess or binding energy here. Since the total number of neutrons and protons
is unchanged in nuclear reactions (charge and mass conservation), we know that the
“bulk” mass terms (i.e. (Z +N)mu and ZMH +NMn) will cancel on both sides. We
are left with an equation for the Q-value that depends on only the mass excesses or
only on the binding energies.

∆A +∆B = ∆C +∆D +Q[A(B,C)D] (7)

BA + BB = BC + BD −Q[A(B,C)D] (8)
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3. Weak rate Q-value calculation

Q-values can be calculated as above for any nuclear reaction. Given charge and mass
conservation, we do not need to differentiate between nuclear and atomic masses. The
electron mass contribution cancels, as does the overall “bulk” mass terms. All one
needs is to use whatever particular mass convention consistently; all should be nuclear
or all atomic masses.

(a) As an example, let us consider the first reaction in the pp-chain which powers the
Sun, p + p → d + e+ + νe. This reaction fuses 2 protons (p) into a deuteron (d,
nucleus of Deuterium atom, or heavy Hydrogen 2H), a positron (e+ or β+) and
electron neutrino (νe). Substituting nuclear masses from the Particle Data Group
(http://pdg.lbl.gov/), we find:

p+ p → d+ e+ + νe (9)

2Mp = Md +Me +Q

Q = 2Mp −Md −Me

Q = 2(938.272)− 1875.613− 0.511

Q = 0.42MeV

Existing in a plasma, where free electrons roam, a decay emitting a positron will
annihilate quite rapidly, dumping an extra 2Me’s worth of energy into the plasma
per reaction (e− + e+ → 2γ). Thus, adding to energy release from the original
reaction:

Qeff = Q+ 2Me (10)

Qeff = 0.42 + 2(0.511)

Qeff = 1.44 MeV

We can repeat this exercise using atomic masses instead, assumingMatm ≈ Mnuc+
ZMe:

p+ p → d+ e+ + νe (11)

2(MH −Me) = (MD −Me) +Me +Q

Q = 2MH −MD − 2Me

Q = 2∆H −∆D − 2Me substituting mass excess formula

Q = 2(7.289)− 13.138− 2(0.511)

Q = 0.42 MeV

Adding the annihilation energy, we find:

Qeff = Q+ 2Me (12)

Qeff = 2MH −MD − 2Me + 2Me

Qeff = 2MH −MD

Qeff = 1.44 MeV

Note that the annihilation energy cancels the electron mass corrections, leaving
only the atomic masses (or mass excesses) relevant. This is true of all β+ decays.
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(b) For a second example, let us consider a “sister” reaction to the first,
p + p + e− → d + νe. Otherwise known as an electron capture reaction, in this
case the pep reaction. We find using nuclear masses:

p+ p+ e− → d+ νe (13)

2Mp +Me = Md +Q

Q = 2Mp −Md +Me

Q = 1.44 MeV

Repeating with atomic masses, assuming Matm ≈ Mnuc + ZMe:

p+ p+ e− → d+ νe (14)

2(MH −Me) +Me = (MD −Me) +Q

Q = 2MH −MD

Q = 1.44 MeV

Note that the electron mass drops out of the equation using atomic masses again.
The electron capture reaction transmutes the same nuclides as the positron decay
reaction. As long as we are in a astrophysical situation for which the positrons
annihilate, the Q-values for electron capture and positron decay are identical for
all nuclides.

4



(c) For our last example, let us consider the group of reactions in the pp-chain making
4He, 4p →

4He + 2e+ + 2νe. We find:

4p →
4He + 2e+ + 2νe

4Mp = Mα + 2Me +Q

Q = 4Mp −Mα − 2Me

Q = 4(938.272)− 3727.379− 2(0.511)

Q = 3753.088− 3727.379− 1.022

Q = 24.687 MeV (15)

Taking into account the annihilation of positrons, 2Me for every positron; yielding
a total of 4Me for this reaction, we find:

Qeff = Q+ 2(2Me) = Q+ 4Me (16)

Qeff = 24.687 + 4(0.511)

Qeff = 26.731 MeV

Now we repeat using atomic masses, assuming Matm ≈ Mnuc + ZMe:

4p →
4He + 2e+ + 2νe

4(MH −Me) = (M4He − 2Me) + 2Me +Q

Q = 4MH −M4He − 4Me

Q = 4∆H −∆4He − 4Me

Q = 4(7.289)− 2.425− 4(0.511)

Q = 24.687 MeV (17)

Adding the annihilation energy:

Qeff = Q+ 4Me (18)

Qeff = 4∆H −∆4He − 4Me + 4Me

Qeff = 4∆H −∆4He

Qeff = 26.731 MeV

Again, note that the annihilation energy cancels the electron mass corrections,
leaving only the atomic masses (or mass excesses) relevant.
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