
1 SOHO, 171A Fe emission line 

The mass of a nucleus 

• Energy generation in stars 
• which nuclei are stable 
• which nuclei exist in principle 
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Nucleons Mass Spin Charge 
Proton 938.272 MeV/c2 1/2 +1e 
Neutron 939.565 MeV/c2 1/2 0 

size: ~1 fm 

Nuclei 
a bunch of nucleons bound together create a potential for an additional : 
nucleons attract each other via the strong force ( range ~ 1 fm) 

neutron proton 
(or any other charged particle) 
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Nucleons in a Box: 
Discrete energy levels in nucleus 

R ~ 1.3 x A1/3   fm 

 Nucleons are bound by attractive force. Therefore, mass of nucleus 
     is smaller than the total mass of the nucleons by the binding energy dm=B/c2 

Presenter
Presentation Notes
How many protons and neutrons can be filled in ? As many as one likes as potential is created by nucleons !!!�BUT: assymmetry issue later …
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Nuclear Masses and Binding Energy 

Energy that is released when a nucleus is assembled from neutrons and protons 

mp = proton mass, mn = neutron mass, m(Z,N) = mass of nucleus with Z,N 

• B>0  
• With B the mass of the nucleus is determined. 
• B is very roughly ~A 
  

2/),( cBNmZmNZm np −+=

Most tables give atomic mass excess ∆ in MeV: 

Masses are usually tabulated as atomic masses 

2/ cAmm u ∆+=
(so for 12C: ∆=0)              (see nuclear wallet cards for a table) 

Nuclear Mass 
~ 1 GeV/A 

Electron Mass 
511 keV/Z 

Electron Binding Energy 
13.6 eV (H) 
to 116 keV (K-shell U) / Z 

m =  mnuc  +   Z me -   Be 
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Q-value 

Energy released in a nuclear reaction (>0 if energy is released, <0 if energy is used

Example: The sun is powered by the fusion of hydrogen into helium: 

4p           4He + 2 e+ + 2νe 

Mass difference dM 
released as energy 
dE = dM c2 

νmmmmcQ eHenucpnuc 224/ 4
2 −−−= (using nuclear masses !) 
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In practice one often uses mass excess ∆ and atomic masses. 

As A is always conserved in nuclear reactions the mass excess ∆ can always 
be used instead of the masses (the Amu term cancels) 

Q-value with atomic masses: 

If Z is conserved (no weak interaction) atomic masses can be used instead 
of nuclear masses  (Zme and most of the electron binding energy cancels) 

Otherwise: For each positron emitted subtract 2me /c2= 1.022 MeV from the Q-value 

Example:  4p  4He + 2 e+ + 2νe Z changes an 2 positrons are emitted 

eHeH mmmcQ 44/ 2 −−= With atomic masses 

Q-value with mass excess ∆ 
 

eHeH mcQ 44/ 2 −∆−∆=

(as nucleon masses cancel on both sides, its really the binding energies that 
entirely determine the Q-values !) 

With atomic mass excess 
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How can we calculate that?  

Find masses in nuclear wallet cards at http://www.nndc.bnl.gov/wallet/ 
  

Result for  

eHeH mcQ 44/ 2 −∆−∆=

= 4 x 7.289 MeV – 2.425 MeV – 4 x 0.511 MeV 
= 24.687 MeV 
This is the energy released per reaction 

Note that for example inside the sun the 2 positrons annihilate with  
2 electrons releasing an additional energy of 4me 
So if the positrons do not escape the total energy release is 26.731 MeV 

New atomic mass data center for experimental mass evaluations: http://ribll.impcas.ac.cn/ame/ 
Mass data sets for nuclear astrophysics: https://groups.nscl.msu.edu/jina/nucdatalib/ 

http://ribll.impcas.ac.cn/ame/�
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The liquid drop mass model for the binding energy: (Weizaecker Formula) 
     (assumes incompressible fluid (volume ~ A) and sharp surface) 

AaAZB V=),(
3/2Aas−

3/1

2

A
ZaC−

A
AZaA

2)2/( −
−

2/1−+ Aap

x 1      ee 
x 0      oe/eo 
x (-1)  oo 

Volume Term 

Surface Term   ~ surface area (Surface nucleons less bound) 

Coulomb term. Coulomb repulsion leads to reduction 
    uniformly charged sphere has E=3/5 Q2/R 

Asymmetry term: Pauli principle to protons: symmetric filling 
    of p,n potential boxes has lowest energy (ignore Coulomb) 

protons neutrons neutrons protons 

lower total 
energy = 
more bound 

Pairing term: even number of like nucleons favoured 

(e=even, o=odd referring to Z, N respectively) 

(each nucleon gets bound by about same energy) 

and in addition: p-n more bound than p-p or n-n (S=1,T=0 more 
bound than S=0,T=1) 
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Binding energy per nucleon along the “valley of stability” 

Fusion  
generates 
energy 

Fission  
generates 
energy 
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Best fit values (from A.H. Wapstra, Handbuch der Physik 38 (1958) 1) 

in MeV/c2 aV aS aC aA aP 
15.85 18.34 0.71 92.86 11.46 

Deviation (in MeV) to experimental masses: 

something is missing ! 

(Bertulani & Schechter) 
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Shell model: 
(single nucleon  
energy levels) 

Magic numbers 

are not evenly spaced shell gaps 

more bound 
than average 

less bound 
than average 

need to add 
shell correction term 
S(Z,N) 
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Modern mass models 

Global mass models – 2 basic philosophies: 
1) Microscopic – Macroscopic mass models 
    Macroscopic part: liquid drop, droplet, or refinements thereof) 
    Microscopic part: shell correction, pairing correction, refinement of surface  
        term accounting for finite range of nuclear force … 

2) Microscopic mass  models 
    based on some (parametrized) nucleon-nucleon interaction 

Problem: not very accurate due to limitations of current microscopic theories 
Solution: Fit parameters of interaction specifically to masses to obtain a mass model 

Mass measurements have sufficiently progressed so that global mass models 
are only needed for very neutron rich nuclei (r-process, neutron star crusts) 

Local mass “models”: 
• extrapolations based on neighboring masses (Atomic Mass Evaluation) 
• mirror symmetry: Coulomb shifts, IMME 
• Garvey-Kelson … 
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Modern mass models – how well are they doing? 
Example: mic model: HFB series (Goriely, Pearson) currently at HFB-15 (2008) 
                mic-mac   : Finite Range Droplet Model FRDM (Moller et al.) unchanged since 1993                 

Compare rms deviations to experiment: 

Important is not how well the model fits known masses, 
but how well it predicts unknown masses ! 
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Modern mass models – how well are they doing? 

Example: predicted masses for Zr isotopes 
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Modern mass models – how well are they doing? 

What about mass differences?  
 

Neutron capture Q-values for Zr isotopes 
(neutron separation energy Sn) 
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