The mass of a nucleus

SOHO, 171A Fe emission line



@Nucleons

Mass Spin Charge size: ~1 fm
Proton 938.272 MeV/c? 1/2 +1e
Neutron | 939.565 MeV/c? 1/2 0
Nuclei nucleons attract each other via the strong force ( range ~ 1 fm)
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Nucleons in a Box:
Discrete energy levels in nucleus

- Nucleons are bound by attractive force. Therefore, mass of nucleus
is smaller than the total mass of the nucleons by the binding energy dm=B/c?


Presenter
Presentation Notes
How many protons and neutrons can be filled in ? As many as one likes as potential is created by nucleons !!!�BUT: assymmetry issue later …


Nuclear Masses and Binding Energy

Energy that is released when a nucleus is assembled from neutrons and protons

m(Z,N)=2Zm_ +Nm —B/c’

m,, = proton mass, m, = neutron mass, m(Z,N) = mass of nucleus with Z,N

* B>0

» With B the mass of the nucleus is determined.

B is very roughly ~A

Masses are usually tabulated as atomic masses

m= m
/
Nuclear Mass
~1 GeV/A

+ Zm,- B

Electron Mass
511 keV/Z

—

Electron Binding Energy
13.6 eV (H)
to 116 keV (K-shell U) / Z

(so for 12C: A=0)

Most tables give atomic mass excess A in MeV:  m = Am, + Alc?

(see nuclear wallet cards for a table)




Q-value

Energy released in a nuclear reaction (>0 if energy Is released, <0 if energy is use:

Example: The sun is powered by the fusion of hydrogen into helium:

4p > “‘He+2e*+2v,

ﬁ ——% - Mass difference dM

I released as energy

(using nuclear masses !)




In practice one often uses mass excess A and atomic masses.

O-value with mass excess A

As A is always conserved in nuclear reactions the mass excess A can always
be used instead of the masses (the Am, term cancels)

(as nucleon masses cancel on both sides, its really the binding energies that
entirely determine the Q-values!)

O-value with atomic masses:

If Z is conserved (no weak interaction) atomic masses can be used instead
of nuclear masses (Zme and most of the electron binding energy cancels)

Otherwise: For each positron emitted subtract 2m, /c?>= 1.022 MeV from the Q-value

Example: 4p = “He + 2 e* + 2v,  Z changes an 2 positrons are emitted

Q [c® = 4mH —my, — 4me With atomic masses
Q / C2 — 4AH — AHe — 4me With atomic mass excess :



How can we calculate that?

Find masses in nuclear wallet cards at http://www.nndc.bnl.gov/wallet/

Nuclear Wallet Cards

Nuclide A T#, T, or
Z El A Jn (MeV) Abundance Decay Mode Result for
0 n 1 12+ 8.071 10.183m 17 f-
1 H 1 1/2+ 7.289 99.9885% 70
2 1+ 13.136  0.0115% 70 2
3 1/2+ 14.950 12.32y 2 fi— /C —_— 4 ﬁ f! 4m
4 2- 24.6 n —
5 (Li2+) 32.89 5.7MeV2I 2n H He e
6 (2-) 41.9 1.6 MeV 4
7 (1/2+) 47.9 29x10"%3 y 7
2 He 3 12+ 14.931  0.000134% 3
4 0+ 2.425 99.999866% 3
5 3/2— 11.23 0.60 MeV2 a,n _—
6 0+ 17.592 801 ms 10 B— - 4 X 7.289 Mev - 2.425 MeV - 4 X 0.511 Mev
7 (3/2)- 26.067 150keV20 n
8 0+ 31.609 119.1ms 12 fp—, p-n 16% —_
o 12+ 39.78 a — 4_ 7 Mev
10 0+ 48.81 300 keV 200 n
3 Li 38 29s unbound p? - : T
Do By ) This is the energy released per reaction
A ’/2— 3 =1 5 Ma nor

Note that for example inside the sun the 2 positrons annihilate with
2 electrons releasing an additional energy of 4m,
So if the positrons do not escape the total energy release is 26.731 MeV

New atomic mass data center for experimental mass evaluations:
Mass data sets for nuclear astrophysics: https://groups.nscl.msu.edu/jina/nucdatalib/


http://ribll.impcas.ac.cn/ame/�

The liquid drop mass model for the binding energy: (Weizaecker Formula)
(assumes incompressible fluid (volume ~ A) and sharp surface)

B(Z,A)=a,A Volume Term  (each nucleon gets bound by about same energy)

—a, AZ/ 3 Surface Term ~ surface area (Surface nucleons less bound)

—a

Z 2
C Al/3 Coulomb term. Coulomb repulsion leads to reduction
A uniformly charged sphere has E=3/5 Q%/R

7 _A/? > Asymmetry term: Pauli principle to protons: symmetric filling
—a ( B ) of p,n potential boxes has lowest energy (ignore Coulomb)
A

A lower total

@ 4 energy =
A >0 — &0 more bound

protons neutrons protons neutrons

and in addition: p-n more bound than p-p or n-n (S=1,T=0 more
bound than S=0,T=1)

x1l ee Pairing term: even number of like nucleons favoured

-1/2
x0 oeleo
+ ap A x (-1) 00 (e=even, o=0dd referring to Z, N respectively)




Binding energy per nucleon along the “valley of stability”
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Best fit values (from A.H. Wapstra, Handbuch der Physik 38 (1958) 1)

in MeV/c?

Ay

dg

dc

YN

15.85

18.34

0.71

92.86

11.46

Deviation (in MeV) to experimental masses:

(Bertulani & Schechter)

something is missing !
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Shell model:
(single nucleon
energy levels)

are not evenly spaced

need to add
shell correction term
S(Z,N)
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Modern mass models

Global mass models — 2 basic philosophies:

1) Microscopic — Macroscopic mass models

Macroscopic part: liquid drop, droplet, or refinements thereof)
Microscopic part: shell correction, pairing correction, refinement of surface
term accounting for finite range of nuclear force ...

2) Microscopic mass models
based on some (parametrized) nucleon-nucleon interaction

Problem: not very accurate due to limitations of current microscopic theories
Solution: Fit parameters of interaction specifically to masses to obtain a mass model

Local mass “models”:
* extrapolations based on neighboring masses (Atomic Mass Evaluation)
e mirror symmetry: Coulomb shifts, IMME
» Garvey-Kelson ...

Mass measurements have sufficiently progressed so that global mass models
are only needed for very neutron rich nuclei (r-process, neutron star crusts)

11



Modern mass models — how well are they doing?

Example: mic model: HFB series (Goriely, Pearson) currently at HFB-15 (2008)
mic-mac : Finite Range Droplet Model FRDM (Moller et al.) unchanged since 1993

Compare rms deviations to experiment:
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Important is not how well the model fits known masses,
but how well it predicts unknown masses !



Modern mass models — how well are they doing?

Example: predicted masses for Zr isotopes
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Modern mass models — how well are they doing?
What about mass differences?

Neutron capture Q-values for Zr isotopes
(neutron separation energy Sn)

Sn - Sn FRDM (MeV)
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