The mass of a nucleus # Nucleons | | Mass | Spin | Charge | |---------|----------------------------|------|--------| | Proton | 938.272 MeV/c^2 | 1/2 | +1e | | Neutron | 939.565 MeV/c ² | 1/2 | 0 | size: ~1 fm ### <u>Nuclei</u> nucleons attract each other via the strong force (range ~ 1 fm) a bunch of nucleons bound together create a potential for an additional: → Nucleons are bound by attractive force. Therefore, mass of nucleus is smaller than the total mass of the nucleons by the binding energy dm=B/c² ### **Nuclear Masses and Binding Energy** Energy that is released when a nucleus is assembled from neutrons and protons $$m(Z,N) = Zm_p + Nm_n - B/c^2$$ m_p = proton mass, m_n = neutron mass, m(Z,N) = mass of nucleus with Z,N - B>0 - With B the mass of the nucleus is determined. - B is very roughly ~A Masses are usually tabulated as **atomic masses** Most tables give atomic mass excess Δ in MeV: $m = Am_u + \Delta/c^2$ (so for ^{12}C : Δ =0) (see nuclear wallet cards for a table) #### **Q-value** Energy released in a nuclear reaction (>0 if energy is released, <0 if energy is use **Example:** The sun is powered by the fusion of hydrogen into helium: 4p $$\rightarrow$$ ⁴He + 2 e⁺ + 2 ν_e $$Q/c^2 = 4m_{nuc\ p} - m_{nuc\ 4He} - 2m_e - 2m_v$$ (using nuclear masses!) In practice one often uses mass excess Δ and atomic masses. #### Q-value with mass excess Δ As A is always conserved in nuclear reactions the mass excess Δ can always be used instead of the masses (the Am_u term cancels) (as nucleon masses cancel on both sides, its really the binding energies that entirely determine the Q-values!) #### **Q-value with atomic masses:** If Z is conserved (no weak interaction) atomic masses can be used instead of nuclear masses (Zme and most of the electron binding energy cancels) Otherwise: For each positron emitted subtract 2m_e /c²= 1.022 MeV from the Q-value Example: $4p \rightarrow {}^4He + 2 e^+ + 2v_e$ Z changes an 2 positrons are emitted $$Q/c^2 = 4m_H - m_{He} - 4m_e \qquad \text{With atomic masses}$$ $$Q/c^2 = 4\Delta_H - \Delta_{He} - 4m_e \qquad \text{With atomic mass excess}$$ ## How can we calculate that? Find masses in nuclear wallet cards at http://www.nndc.bnl.gov/wallet/ #### Nuclear Wallet Cards | Nuclide
Z El A | Jπ | Δ
(MeV) | T½, Γ, or
Abundance | Decay Mode | Result for | |------------------------------|--|--|---|--|---| | 0 n 1 | 1/2+ | 8.071 | 10.183 m <i>17</i> | β- | | | 1 H 1 2 3 4 5 6 7 | 1/2+ $1+$ $1/2+$ $2 (1/2+)$ $(2-)$ $(1/2+)$ | 7.289
13.136
14.950
24.6
32.89
41.9
47.9 | 99.9885% 70
0.0115% 70
12.32 y 2
5.7 MeV 21
1.6 MeV 4
29×10 ⁻²³ y 7 | β-
n
2n
n | $Q/c^2 = 4\Delta_H - \Delta_{He} - 4m_e$ | | 2 He 3 4 5 6 7 8 9 10 3 Li 3 | 1/2+
0+
3/2-
0+
(3/2)-
0+
1/2+
0+ | 11.23
17.592
26.067
31.609
39.78
48.81
29s | 0.000134% 3
99.999866% 3
0.60 MeV 2
801 ms 10
150 keV 20
119.1 ms 12
300 keV 200
unbound | $\begin{array}{l} \alpha,n\\ \beta-\\ n\\ \beta-,\beta-n16\%\\ n\\ n\\ p? \end{array}$ | = 4 x 7.289 MeV - 2.425 MeV - 4 x 0.511 MeV
= 24.687 MeV
This is the energy released per reaction | | 4
5 | 2-
3/2- | 25.3
11.68 | 6.03 MeV
=1 5 MeV | p
n a | This is the chergy released per reaction | Note that for example inside the sun the 2 positrons annihilate with 2 electrons releasing an additional energy of $4m_e$ So if the positrons do not escape the total energy release is 26.731 MeV New atomic mass data center for experimental mass evaluations: http://ribll.impcas.ac.cn/ame/ Mass data sets for nuclear astrophysics: https://groups.nscl.msu.edu/jina/nucdatalib/ The liquid drop mass model for the binding energy: (Weizaecker Formula) (assumes incompressible fluid (volume ~ A) and sharp surface) $$B(Z, A) = a_V A$$ **<u>Volume Term</u>** (each nucleon gets bound by about same energy) $$-a_s A^{2/3}$$ **Surface Term** ~ surface area (Surface nucleons less bound) $$-a_C \frac{Z^2}{A^{1/3}}$$ <u>Coulomb term</u>. Coulomb repulsion leads to reduction uniformly charged sphere has E=3/5 Q²/R $$-a_A \frac{(Z-A/2)^2}{A}$$ Asymmetry term: Pauli principle to protons: symmetric filling of p,n potential boxes has lowest energy (ignore Coulomb) and in addition: p-n more bound than p-p or n-n (S=1,T=0 more bound than S=0,T=1) $$+ a_p A^{-1/2} \begin{cases} x & 1 & \text{ee} \\ x & 0 & \text{oe/eo} \\ x & (-1) & \text{oo} \end{cases}$$ Pairing term: even number of like nucleons favoured (e=even, o=odd referring to Z, N respectively) Binding energy per nucleon along the "valley of stability" Xe136 Sr86 Xe124 No 150 Ne²⁰ Al²⁷ P31 CI35 Fe56 Cu63 As75 Xe¹³⁰ 8 Nd¹⁴⁴ W^{182} Average binding energy per nucleon (MeV) **Fusion Fission** generates i generates energy energy 2 0.5 240 220 160 180 200 140 80 100 120 40 1 60 20 Number of nucleons in nucleus, A #### Best fit values (from A.H. Wapstra, Handbuch der Physik 38 (1958) 1) in MeV/c^2 | a_{V} | $a_{\rm S}$ | $a_{\rm C}$ | a_{A} | a_{P} | |---------|-------------|-------------|---------|---------| | 15.85 | 18.34 | 0.71 | 92.86 | 11.46 | ### **Deviation (in MeV) to experimental masses:** #### Modern mass models #### Global mass models – 2 basic philosophies: 1) Microscopic – Macroscopic mass models Macroscopic part: liquid drop, droplet, or refinements thereof) Microscopic part: shell correction, pairing correction, refinement of surface term accounting for finite range of nuclear force ... 2) Microscopic mass models based on some (parametrized) nucleon-nucleon interaction Problem: not very accurate due to limitations of current microscopic theories Solution: Fit parameters of interaction specifically to masses to obtain a mass model #### Local mass "models": - extrapolations based on neighboring masses (Atomic Mass Evaluation) - mirror symmetry: Coulomb shifts, IMME - Garvey-Kelson ... Mass measurements have sufficiently progressed so that global mass models are only needed for very neutron rich nuclei (r-process, neutron star crusts) # Modern mass models – how well are they doing? Example: mic model: HFB series (Goriely, Pearson) currently at HFB-15 (2008) mic-mac : Finite Range Droplet Model FRDM (Moller et al.) unchanged since 1993 Compare rms deviations to experiment: Important is not how well the model fits known masses, but how well it predicts unknown masses! # Modern mass models – how well are they doing? Example: predicted masses for Zr isotopes # Modern mass models – how well are they doing? What about mass differences? Neutron capture Q-values for Zr isotopes (neutron separation energy Sn)