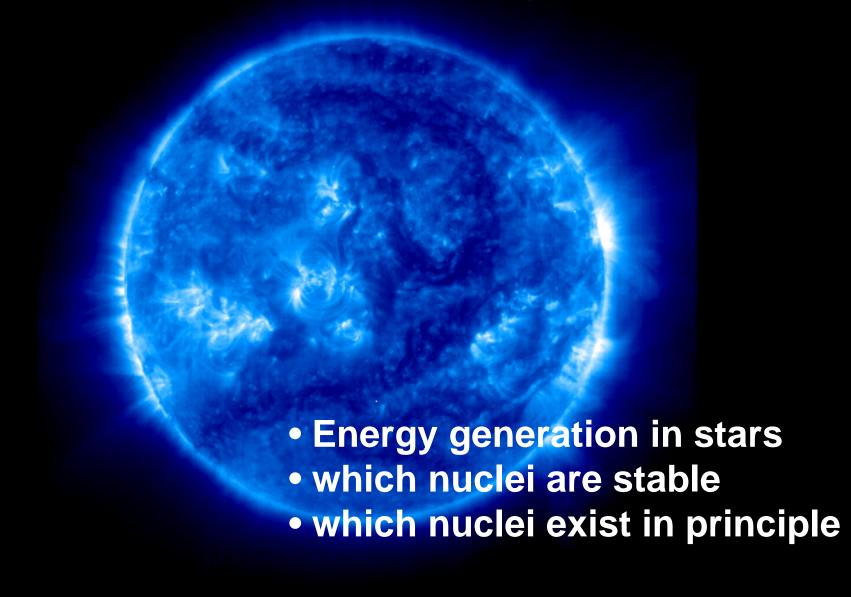
The mass of a nucleus



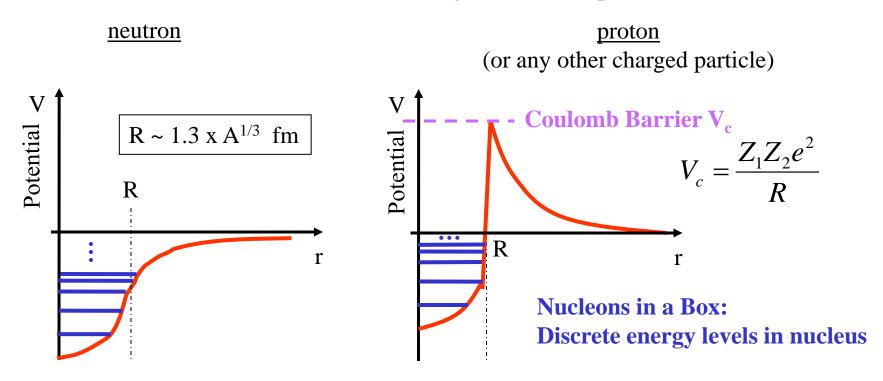
Nucleons

	Mass	Spin	Charge
Proton	938.272 MeV/c^2	1/2	+1e
Neutron	939.565 MeV/c ²	1/2	0

size: ~1 fm

<u>Nuclei</u>

nucleons attract each other via the strong force (range ~ 1 fm) a bunch of nucleons bound together create a potential for an additional:



→ Nucleons are bound by attractive force. Therefore, mass of nucleus is smaller than the total mass of the nucleons by the binding energy dm=B/c²

Nuclear Masses and Binding Energy

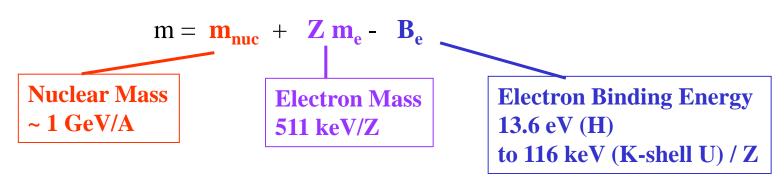
Energy that is released when a nucleus is assembled from neutrons and protons

$$m(Z,N) = Zm_p + Nm_n - B/c^2$$

 m_p = proton mass, m_n = neutron mass, m(Z,N) = mass of nucleus with Z,N

- B>0
- With B the mass of the nucleus is determined.
- B is very roughly ~A

Masses are usually tabulated as **atomic masses**



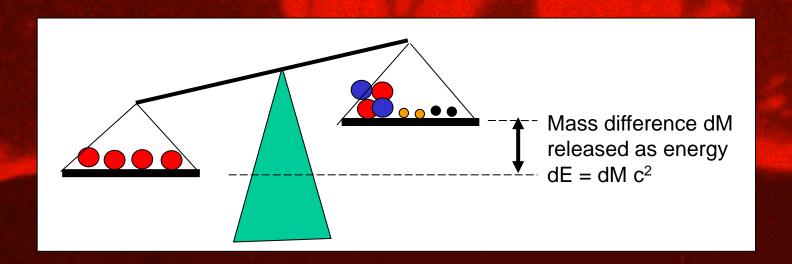
Most tables give atomic mass excess Δ in MeV: $m = Am_u + \Delta/c^2$ (so for ^{12}C : Δ =0) (see nuclear wallet cards for a table)

Q-value

Energy released in a nuclear reaction (>0 if energy is released, <0 if energy is use

Example: The sun is powered by the fusion of hydrogen into helium:

4p
$$\rightarrow$$
 ⁴He + 2 e⁺ + 2 ν_e



$$Q/c^2 = 4m_{nuc\ p} - m_{nuc\ 4He} - 2m_e - 2m_v$$
 (using nuclear masses!)

In practice one often uses mass excess Δ and atomic masses.

Q-value with mass excess Δ

As A is always conserved in nuclear reactions the mass excess Δ can always be used instead of the masses (the Am_u term cancels)

(as nucleon masses cancel on both sides, its really the binding energies that entirely determine the Q-values!)

Q-value with atomic masses:

If Z is conserved (no weak interaction) atomic masses can be used instead of nuclear masses (Zme and most of the electron binding energy cancels)

Otherwise: For each positron emitted subtract 2m_e /c²= 1.022 MeV from the Q-value

Example: $4p \rightarrow {}^4He + 2 e^+ + 2v_e$ Z changes an 2 positrons are emitted

$$Q/c^2 = 4m_H - m_{He} - 4m_e \qquad \text{With atomic masses}$$

$$Q/c^2 = 4\Delta_H - \Delta_{He} - 4m_e \qquad \text{With atomic mass excess}$$

How can we calculate that?

Find masses in nuclear wallet cards at http://www.nndc.bnl.gov/wallet/

Nuclear Wallet Cards

Nuclide Z El A	Jπ	Δ (MeV)	T½, Γ, or Abundance	Decay Mode	Result for
0 n 1	1/2+	8.071	10.183 m <i>17</i>	β-	
1 H 1 2 3 4 5 6 7	1/2+ $1+$ $1/2+$ $2 (1/2+)$ $(2-)$ $(1/2+)$	7.289 13.136 14.950 24.6 32.89 41.9 47.9	99.9885% 70 0.0115% 70 12.32 y 2 5.7 MeV 21 1.6 MeV 4 29×10 ⁻²³ y 7	β- n 2n n	$Q/c^2 = 4\Delta_H - \Delta_{He} - 4m_e$
2 He 3 4 5 6 7 8 9 10 3 Li 3	1/2+ 0+ 3/2- 0+ (3/2)- 0+ 1/2+ 0+	11.23 17.592 26.067 31.609 39.78 48.81 29s	0.000134% 3 99.999866% 3 0.60 MeV 2 801 ms 10 150 keV 20 119.1 ms 12 300 keV 200 unbound	$\begin{array}{l} \alpha,n\\ \beta-\\ n\\ \beta-,\beta-n16\%\\ n\\ n\\ p? \end{array}$	= 4 x 7.289 MeV - 2.425 MeV - 4 x 0.511 MeV = 24.687 MeV This is the energy released per reaction
4 5	2- 3/2-	25.3 11.68	6.03 MeV =1 5 MeV	p n a	This is the chergy released per reaction

Note that for example inside the sun the 2 positrons annihilate with 2 electrons releasing an additional energy of $4m_e$ So if the positrons do not escape the total energy release is 26.731 MeV

New atomic mass data center for experimental mass evaluations: http://ribll.impcas.ac.cn/ame/ Mass data sets for nuclear astrophysics: https://groups.nscl.msu.edu/jina/nucdatalib/

The liquid drop mass model for the binding energy: (Weizaecker Formula) (assumes incompressible fluid (volume ~ A) and sharp surface)

$$B(Z, A) = a_V A$$

<u>Volume Term</u> (each nucleon gets bound by about same energy)

$$-a_s A^{2/3}$$

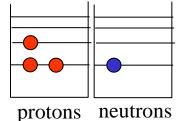
Surface Term ~ surface area (Surface nucleons less bound)

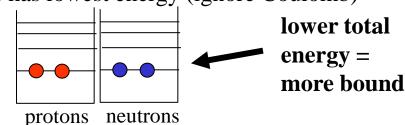
$$-a_C \frac{Z^2}{A^{1/3}}$$

<u>Coulomb term</u>. Coulomb repulsion leads to reduction uniformly charged sphere has E=3/5 Q²/R

$$-a_A \frac{(Z-A/2)^2}{A}$$

Asymmetry term: Pauli principle to protons: symmetric filling of p,n potential boxes has lowest energy (ignore Coulomb)





and in addition: p-n more bound than p-p or n-n (S=1,T=0 more bound than S=0,T=1)

$$+ a_p A^{-1/2} \begin{cases} x & 1 & \text{ee} \\ x & 0 & \text{oe/eo} \\ x & (-1) & \text{oo} \end{cases}$$

Pairing term: even number of like nucleons favoured

(e=even, o=odd referring to Z, N respectively)

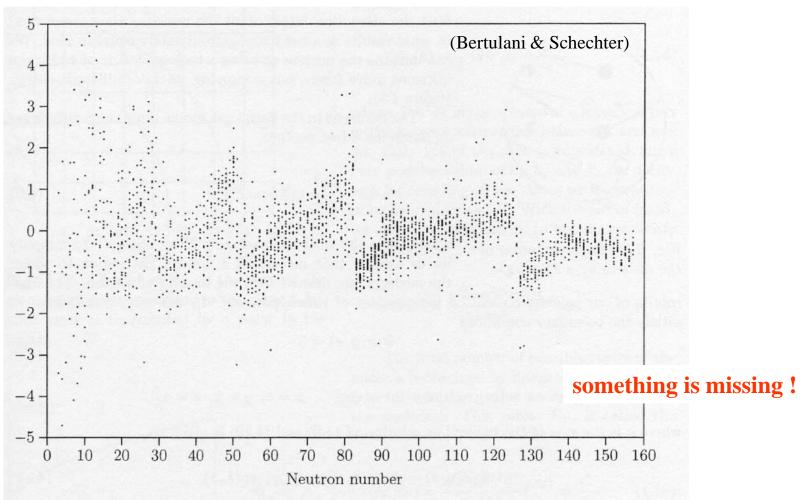
Binding energy per nucleon along the "valley of stability" Xe136 Sr86 Xe124 No 150 Ne²⁰ Al²⁷ P31 CI35 Fe56 Cu63 As75 Xe¹³⁰ 8 Nd¹⁴⁴ W^{182} Average binding energy per nucleon (MeV) **Fusion Fission** generates i generates energy energy 2 0.5 240 220 160 180 200 140 80 100 120 40 1 60 20 Number of nucleons in nucleus, A

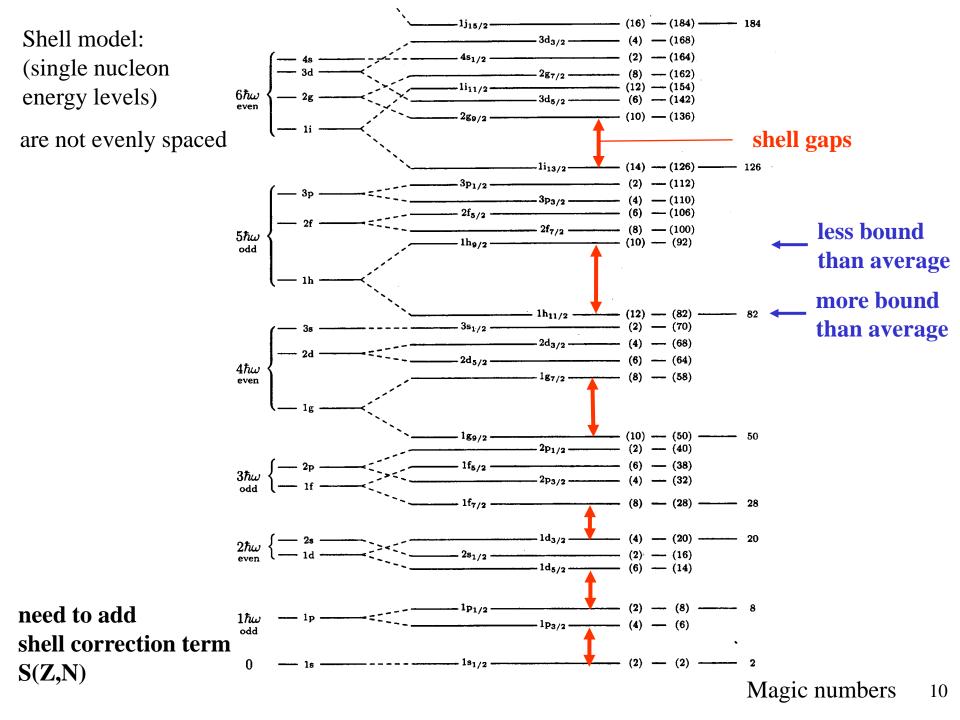
Best fit values (from A.H. Wapstra, Handbuch der Physik 38 (1958) 1)

in MeV/c^2

a_{V}	$a_{\rm S}$	$a_{\rm C}$	a_{A}	a_{P}
15.85	18.34	0.71	92.86	11.46

Deviation (in MeV) to experimental masses:





Modern mass models

Global mass models – 2 basic philosophies:

1) Microscopic – Macroscopic mass models

Macroscopic part: liquid drop, droplet, or refinements thereof)
Microscopic part: shell correction, pairing correction, refinement of surface term accounting for finite range of nuclear force ...

2) Microscopic mass models based on some (parametrized) nucleon-nucleon interaction

Problem: not very accurate due to limitations of current microscopic theories

Solution: Fit parameters of interaction specifically to masses to obtain a mass model

Local mass "models":

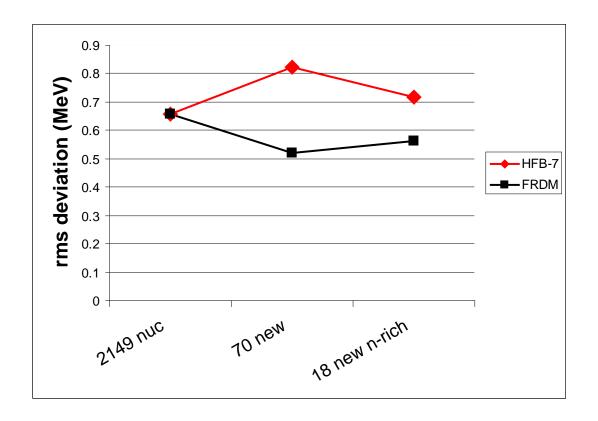
- extrapolations based on neighboring masses (Atomic Mass Evaluation)
- mirror symmetry: Coulomb shifts, IMME
- Garvey-Kelson ...

Mass measurements have sufficiently progressed so that global mass models are only needed for very neutron rich nuclei (r-process, neutron star crusts)

Modern mass models – how well are they doing?

Example: mic model: HFB series (Goriely, Pearson) currently at HFB-15 (2008) mic-mac : Finite Range Droplet Model FRDM (Moller et al.) unchanged since 1993

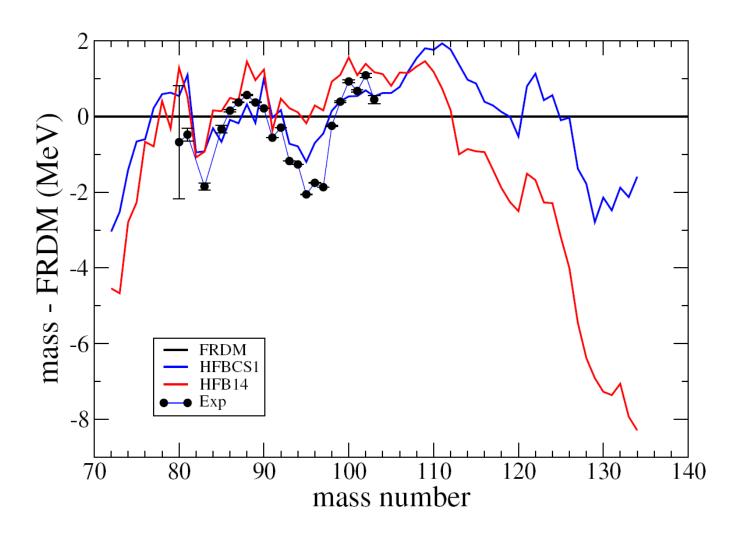
Compare rms deviations to experiment:



Important is not how well the model fits known masses, but how well it predicts unknown masses!

Modern mass models – how well are they doing?

Example: predicted masses for Zr isotopes



Modern mass models – how well are they doing?

What about mass differences?

Neutron capture Q-values for Zr isotopes (neutron separation energy Sn)

