The nucleus

The atomic nucleus consists of protons and neutrons

Protons and Neutrons are therefore called nucleons

A nucleus is characterized by:

- A: Mass Number = number of nucleons
- Z: Charge Number = number of protons
- N: Neutron Number

Determines the Element

Determines the Isotope

Of course A=Z+N

Usual notation:

Mass number A

12C

Element symbol – defined by charge number C is Carbon and Z=6

So this nucleus is made of 6 protons and 6 neutrons

Abundance of a nucleus

How can we describe the relative abundances of nuclei of different species and their evolution in a given sample (say, a star, or the Universe)?

1) Number density

We could use the number density N_i = number of nuclei of species i per cm³

Disadvantage: tracks not only nuclear processes that create or destroy nuclei, but also density changes, for example due to compression or expansion of the material.

→ not useful as characterization of composition

2) Mass fraction

Mass fraction X_i is fraction of total mass of sample that is made up by nucleus of species i

$$n_i = \frac{X_i \rho}{m_i}$$
 ρ : mass density (g/cm³) m_i mass of atom of species i

Or in terms of moles:

$$n_i = \frac{X_i \rho N_A}{m_{imole}}$$
 $m_{i mole}$ (atomic) mole mass of species i

Of course:

$$\sum_{i} X_{i} = 1$$

Disadvantage: depends on mass of nucleus (for equal numbers of particles a heavier nucleus has a larger mass fraction)

3) Abundance

reactions mostly affect particle numbers, therefore sometimes one wants a quantity that is a measure for the number of particles (if two species have the same number density one wants the "abundance" to be the same regardless of mass)

$$n_i = \underbrace{\frac{X_i}{M_{i\,mole}}} \rho \ N_A$$

so
$$n_i = Y_i \rho N_A$$

The abundance Y is proportional to number density but changes only if the nuclear species gets destroyed or produced. Changes in density are factored out.

$$Y = \frac{X}{m_{mole}}$$

Unit: in principle mole/g

 $Y = \frac{X}{m_{mole}}$ So abundance Y is the number of moles of a species per gram matter (sometimes called mole fraction BUT does not sum to 1!!!)

Common approximation:

$$m_{mole} = A$$

With nuclear mass number A

- Neglects nuclear binding energy
- Neglects electron masses (and binding energies)
- ONLY VALID IN CGS UNITS

With that:

$$Y = \frac{X}{A}$$

And typically Y is considered unit less

$$n_i = Y_i \rho N_A$$
 Still works out unit wise as $N_A=1/m_u$ in CGS units

Some useful quantities and relations

of course
$$\sum_{i} X_{i} = 1$$

but, as
$$Y=X/A < X$$
 $\sum_{i} Y_{i} < 1$

Abundance is not a fraction!

 $\bullet \underline{ \text{Mean molecular weight } \mu_i}$

$$\frac{\text{ean molecular weight } \mu_i}{\text{= average mass number}} = \frac{\sum_i A_i Y_i}{\sum_i Y_i} = \frac{1}{\sum_i Y_i} \qquad \text{or} \qquad \mu_i = \frac{1}{\sum_i Y_i}$$

$$\mu_i = \frac{1}{\sum_i Y_i}$$

Electron Abundance Y_e

As matter is electrically neutral, for each nucleus with charge number Z there are Z electrons:

$$Y_e = \sum_i Z_i Y_i$$
 and as with nuclei, electron density $n_e = \rho N_A Y_e$

can also write:
$$Y_e = \frac{\sum_i Z_i Y_i}{\sum_i A_i Y_i}$$
 prop. to number of protons prop. to number of nucleons

So Y_e is ratio of protons to nucleons in sample (counting all protons including the ones contained in nuclei - not just free protons as described by the "proton abundance") some special cases:

For 100% hydrogen: Y_e=1

For equal number of protons and neutrons (N=Z nuclei): Y_e =0.5

For pure neutron gas: Y_e=0