
The Python Interpreter - Part II

Remi Lehe, Daniel Winklehner

US Particle Accelerator School (USPAS) - Winter Session
Simulation of Beam and Plasma Systems

D. Bruhwiler, R. Lehe, S. Lund, J.-L. Vay, & D. Winklehner
Old Dominion U., Hampton, VA, 15-26 January, 2018

Python interpreter: Outline

1 Reusing code: functions, classes, modules

2 Faster computation: Forthon

3 Faster computation: Parallel Python

Reusing code Forthon Parallel

Modules

Module

Defines variables to be imported
by other Python sessions.

Any Python script can be
treated as a module.
numpy is a set of modules.

The section
if name == ’ main ’:

is executed if the script is run
(e.g. python geometric.py)
but not when it is imported
(import geometric as gm)

Example module

In file geometric.py:

Example import and use

In e.g. ipython:
import geometric as gm

S = gm.geometric sum(8, 2)

3

Reusing code Forthon Parallel

Importing modules

Different import styles:

import geometric

→ S = geometric.geometric sum(8,2)

import geometric as gm

→ S = gm.geometric sum(8,2)

from geometric import geometric sum

or from geometric import * (imports all variables)
→ S = geometric sum(8,2)

The source file of the module needs to be:

in the same directory

or in the default Python path
(case of installed packages like numpy, matplotlib or even warp)

4

Reusing code Forthon Parallel

Functions and modules: task

Task 5

Download the file
http://github.com/RemiLehe/uspas exercise/raw/master/euler.py and put
the last section (which creates an instance of EulerSolver) in a if

name == ’ main ’ clause.
Then use this file as a module, inside ipython

In the shell, type ipython --matplotlib

Then, inside ipython, type from euler import *

Then create instances of EulerSolver for N1=100 and N2=100

Then call the methods euler integration and
evaluate result on each instance. Compare the results.

(NB: Do not hesitate to use tab completion in ipython)

5

http://github.com/RemiLehe/uspas_exercise/raw/master/euler.py

Reusing code Forthon Parallel

How to install publicly-available modules/packages

Use a package manager!

Automatically installs dependencies of requested packages

Keeps track of the packages that you installed and their version

pip

Example: pip install Forthon

Can install any package that has been uploaded to
pypi.python.org

conda

Example: conda install numpy

Only works for the Anaconda distribution of Python

Automatically downloads binaries that are requested for certain
Python packages (e.g. MPI for mpi4py, HDF5 for h5py)

6

http://pypi.python.org/pypi

Reusing code Forthon Parallel

How to write your own module/package

Structure (from http://docs.python-guide.org)

README.rst

LICENSE

setup.py

requirements.txt

sample/ init .py

sample/core.py

sample/helpers.py

docs/conf.py

docs/index.rst

tests/test basic.py

tests/test advanced.py

Minimal Structure

setup.py

sample/ init .py

sample/core.py
7

http://docs.python-guide.org

Reusing code Forthon Parallel

How to write your own module/package

setup.py

from setuptools import setup, find packages

setup(

name=’sample-package’,

packages=find packages(’./’)

)

sample/ init .py

from .core import CoreClass

(Note: sample-package, sample, core and CoreClass are example
names ; they depend on your code.)

Install the module using pip

From the directory that contains setup.py, type:
pip install .

8

Python interpreter: Outline

1 Reusing code: functions, classes, modules

2 Faster computation: Forthon

3 Faster computation: Parallel Python

Reusing code Forthon Parallel

Faster computation

Problem

Large for loops are slow in Python.

Example:

Solution

If the operation is of type element-wise or reduction:
Use numpy syntax

Otherwise, rewrite the for loop in a compiled language
(e.g. Fortran, C) and link it to the rest of the Python code

→ High-level control with Python (modularity, interactivity)
→ Low-level number-crunching with e.g. Fortran or C (efficiency)

10

Reusing code Forthon Parallel

Faster computation: Forthon

Forthon

Generates links between Fortran and Python

Open-source, created by D. P. Grote (LLNL)
https://github.com/dpgrote/Forthon

Heavily used in Warp for low-level number crunching

On the user side:

Write Fortran subroutines and modules in a .F file

Write a .v file to tell which variables to link to Python

Compile with Forthon → produces a Python module

Import the module in Python and use the linked variables

NB: Other similar solutions exist: f2py (links Fortran code), Cython
(generates and links C code), Numba (compiles Python code), etc...

11

https://github.com/dpgrote/Forthon

Reusing code Forthon Parallel

Faster computation: task

Task 6

Download and decompress the code from
http://github.com/RemiLehe/uspas exercise/raw/master/Forthon task.tgz

The files acc euler.F and acc euler.v are the files needed by
Forthon, while euler.py is the code from task 5.

The Fortran file acc euler.F contains an error in the line that
starts with x(i) = . Spot it and correct it.

Compile the code with Forthon by typing make in the shell.
A new file acc eulerpy.so should be created.

At the beginning of the file euler.py, add
from acc eulerpy import forthon integration then create a
new method acc euler integration(self), which calls
forthon integration (see acc euler.F for its signature).

In ipython, create an instance with N=10**6, and compare the
runtime of euler integration and acc euler integration

12

http://github.com/RemiLehe/uspas_exercise/raw/master/Forthon_task.tgz

Python interpreter: Outline

1 Reusing code: functions, classes, modules

2 Faster computation: Forthon

3 Faster computation: Parallel Python

Reusing code Forthon Parallel

Faster Computation: Multiprocessing and MPI

multiprocessing is a python
module that introduces an
API to access multiple
processors on the same node.

very useful for tasks that
have many independent
repetitive steps (e.g. particle
tracing without space charge)

Typical (simple) usage with map():

Message Passing Interface (MPI)

python can also be used with MPI (e.g. on a big cluster)

using mpi4py (but necessary to install underlying MPI binaries)

Remi will talk about parallel computing on Friday, Jan 18th

14

Reusing code Forthon Parallel

References

Scipy lecture notes:
http://www.scipy-lectures.org/ (G. Varoquaux et al., 2015)

Python tutorial:
https://docs.python.org/3/tutorial/ (Python Software
foundation, 2016)

Forthon:
https://github.com/dpgrote/Forthon (D. Grote et al., 2016)

15

http://www.scipy-lectures.org/
https://docs.python.org/3/tutorial/
https://github.com/dpgrote/Forthon

	Reusing code: functions, classes, modules
	Faster computation: Forthon
	Faster computation: Parallel Python

