
The Python interpreter

Daniel Winklehner, Remi Lehe

US Particle Accelerator School (USPAS) Summer Session
Self-Consistent Simulations of Beam and Plasma Systems

S. M. Lund, J.-L. Vay, D. Bruhwiler, R. Lehe & D. Winklehner
Old Dominion U., Hampton, VA, 15-26 January, 2018

Python interpreter: Outline

1 Overview of the Python language

2 Python, numpy and matplotlib

3 Reusing code: functions, modules, classes

4 Faster computation: Forthon

Overview Scientific Python Reusing code Forthon

Overview of the Python programming language

Interpreted language (i.e. not compiled)
→ Interactive, but not optimal for computational speed

Readable and non-verbose
No need to declare variables
Indentation is enforced

Free and open-source
+ Large community of open-souce packages

Well adapted for scientific and data analysis applications
Many excellent packages, esp. numerical computation (numpy),
scientific applications (scipy), plotting (matplotlib), data
analysis (pandas, scikit-learn)

3

Overview Scientific Python Reusing code Forthon

Interfaces to the Python language

Scripting

Code written in a file, with a
text editor (gedit, vi, emacs)

Execution via command line
(python + filename)

Convenient for long-term code

Interactive shell

Obtained by typing python or
(better) ipython

Commands are typed in and
executed one by one

Convenient for exploratory work,
debugging, rapid feedback, etc...

4

Overview Scientific Python Reusing code Forthon

Interfaces to the Python language

IPython (a.k.a Jupyter) notebook

Notebook interface, similar to
Mathematica.

Intermediate between scripting
and interactive shell, through
reusable cells

Obtained by typing jupyter

notebook, opens in your web
browser

Convenient for exploratory work,
scientific analysis and reports

5

Overview Scientific Python Reusing code Forthon

PyCharm Integrated Development Environment (IDE)

https://www.jetbrains.com/pycharm/

6

Overview Scientific Python Reusing code Forthon

Python 2 vs. Python 3

A Quick Note

A lot of python based software still supports both versions of
python, but better start new projects in python 3.x for future
compatibility.

python 2.7.x

print "Hello World"

Division: Integer division
yields int results
(”floor division”)

implicit relative import
from module import

function

python 3.x

print("Hello World")

Division: All divisions
yield float results
(”true division”)

explicit relative import
from .module import

function

7

Overview Scientific Python Reusing code Forthon

Overview of the Python language

This lecture

Reminder of the main points of the Scipy lecture notes through an
example problem.

Example problem: Euler’s method

Use Euler’s method to numerically integrate, between t = 0 and 10:

d x(t)

dt
= x(t) cos(t) with x(0) = 1

Compare it with the exact solution: x(t) = esin(t)

Reminder: In this case, Euler’s method gives:

ti = i∆t

xi = xi−1 + ∆t× xi−1 cos(ti−1)

tx0 = 1 x1 x2 x3
...

∆t

8

Python interpreter: Outline

1 Overview of the Python language

2 Python, numpy and matplotlib

3 Reusing code: functions, modules, classes

4 Faster computation: Forthon

Overview Scientific Python Reusing code Forthon

Example problem: Structure of the code

Storage in memory:

t t0 t1 t2 t3 t4 t5 t6 t7 t8 t9

x x0 x1 x2 x3 x4 x5 x6 x7 x8 x9

t
∆t

For loop:

Repeatedly apply: xi = xi−1 + ∆t× xi−1 cos(ti−1)

10

Overview Scientific Python Reusing code Forthon

Numpy arrays

Numpy arrays

Provide efficient memory storage and computation,
for large number of elements of the same type.

Standard import: import numpy as np

Creation of numpy arrays:
np.arange, np.zeros, np.random.rand, np.empty, etc...
(In ipython, use e.g. np.arange? to read the documentation)

Individual elements are accessed with square brackets:
x[i] (1D array), y[i,j,k] (3D array)
For an array with N elements, the indices start at 0

(included) and end at N-1 (included)

Subsets of the array are accessed using slicing syntax:
x[start index : end index : step] ; in particular:

x[start index : end index] : slicing with step 1 by default
x[: end index] : slicing with start index 0 by default
x[start index: -1] : slicing up to the last-but-one element 11

Overview Scientific Python Reusing code Forthon

For loops

For loop

Repeatedly perform a given operation
(e.g. apply the same operation to every element of a numpy array)

Syntax:
for i in range(start index , end index , step):

Perform some operation that depends on i

Indentation and the use of column (:) are key.

The range function can be used with 1, 2 or 3 arguments:

range(N): loop from index 0 to index N-1 (included)
range(i,N): loop from index i to index N-1 (included)
range(i,N,k): loop from index i to index N-1 with step k

In the above, range can also be replaced by a list or any iterable.

12

Overview Scientific Python Reusing code Forthon

Numpy and for loops: task

Task 1

In a text editor, write a python script (named euler.py) which:

Sets the number of integration steps to N = 200,
and the timestep to dt = 10./N

Initializes the array t (with N elements) using np.arange so that

ti = i∆t

Initializes the array x (with N elements) using np.empty and
setting the initial point x[0] to 1.

Loops through the array x and applies Euler’s method:
(Here, the loop should start at i = 1, not i = 0)

xi = xi−1 + ∆t× xi−1 cos(ti−1)

Run the script (python euler.py), to check that there is no error.
13

Overview Scientific Python Reusing code Forthon

Comparison with the exact solution

t t0 t1 t2 t3 t4 t5 t6 t7 t8 t9

x x0 x1 x2 x3 x4 x5 x6 x7 x8 x9

x exact esin(t0) esin(t1) esin(t2) esin(t3) esin(t4) esin(t5) esin(t6) esin(t7) esin(t8) esin(t9)

We wish to compare the two results by:

Calculating the RMS error:

εRMS =

√√√√ 1

N

N−1∑
i=0

(xi − xexact,i)2

Plotting x and xexact versus t.

14

Overview Scientific Python Reusing code Forthon

Numpy arrays: element-wise operations

Element-wise operation

Operation that is repeated for each element of an array
and does not depend on previous/next elements.

e.g. xexact,i = esin(ti) ∀i ∈ [0, N − 1]

Could be done with a for loop:

for i in range(N):

x exact[i] = np.exp(np.sin(t[i]))

But is computationally faster with numpy vector syntax:

x exact = np.exp(np.sin(t))

Numpy vector syntax also works for the element-wise operations:
+, -, *, /, ** (power), np.sqrt (square-root), np.log, etc...

15

Overview Scientific Python Reusing code Forthon

Numpy arrays: reduction operations

Reduction operation

Operation that extracts a single scalar from a full array

e.g.

S =

N−1∑
i=0

yi

Again, could be done with a for loop:

S = 0

for i in range(N):

S = S + y[i]

But is computationally faster with numpy reduction methods

S = np.sum(y)

Other reduction operations:
np.product, np.max, np.mean, etc... (for real or integer arrays)
np.any, np.all, etc... (for boolean arrays)

16

Overview Scientific Python Reusing code Forthon

Plotting package: matplotlib

Other Python plotting packages: pygist, bokeh, seaborn, bqplot, ...

Pros of matplotlib

Publication-quality figures

Extremely versatile and customizable

Standard plotting package in the
Python community

Cons of matplotlib

Slow

Sometimes verbose

Limited interactivity

Standard import: import matplotlib.pyplot as plt

Basic plotting commands:
plt.plot(t, x) (plots 1darray x as a function of 1darray t)

Show the image to the screen:
plt.show() (unneeded when using ipython --matplotlib)

Save the figure to a file:
plt.savefig(file name)

17

Overview Scientific Python Reusing code Forthon

Numpy and matplotlib: task

Task 2

In a text editor, add the following features to euler.py:

Create the array x exact so that xexact,i = esin(ti)

Calculate the RMS error, without using any for loop:

εRMS =

√√√√ 1

N

N−1∑
i=0

(xi − xexact,i)2

Use the print statement, to show the value of the RMS error

Plot x and xexact as a function of t on the same figure,
and show it to the screen. (Use plot(t, x exact, ’--’) to
show the exact solution with dashed lines.)

Run the script (python euler.py), to check that it works.

18

Python interpreter: Outline

1 Overview of the Python language

2 Python, numpy and matplotlib

3 Reusing code: functions, modules, classes

4 Faster computation: Forthon

Overview Scientific Python Reusing code Forthon

Reusing code for the example problem

Example problem

Compare the results of Euler’s method for different values of N
(and thus of dt) on the same plot.

→ Not possible with the code from task 2
(unless we copy and paste a lot of code)

We need to make the code more abstract and reusable:

Define functions that depend on N and initialize the arrays,
perform Euler integration, and plot the results.

Place these functions inside a module so that they can be
imported and used elsewhere.

20

Overview Scientific Python Reusing code Forthon

Functions

Example for function definition

Example for function call

Key syntax: def, () and :,
the body is indented

The “docstring” is optional.
Users can see it in ipython

with geometric sum? or
help(geometric sum)

Here, b has a default value,
which is used when only 2
arguments are given

Functions can also return
several objects
(e.g. return(x, a, b))
or nothing
(no return statement)

Similarly, functions can be
defined with no arguments

21

Overview Scientific Python Reusing code Forthon

Functions: task

Task 3

Reorganize the script euler.py so as to make the code reusable:

Start with the import statements (numpy and matplotlib)

Write a function with signature initialize arrays(N, T=10.)

which sets dt = T/N, initializes t and x, and returns t, x, dt

Write a function euler integration(t, x, dt, N), which
fills the array x (this function does not return anything)

Write a function evaluate result(t, x, N), which computes
the exact result, prints the RMS error, and plots the arrays

Then set N1 = 100, N2 = 200 and create the corresponding
variables t1,x1,dt1 and t2,x2,dt2 with initialize array.

Then call euler integration and evaluate result on each set
of arrays and values. Compare the results.

Type python euler.py to check that the final section runs. 22

Overview Scientific Python Reusing code Forthon

Classes: Introduction

From the previous task...

Although the code works, note that it is tedious to:

create 4 different variables with a suffix 1 or 2

pass these variables as arguments to the different functions

This is solved by object-oriented programming and classes.

23

Overview Scientific Python Reusing code Forthon

Classes: initialization and attributes

Example of class definition

Example of use

Classes are “containers”:
Variables are encapsulated
together as attributes of an
instance of the class.

Creation of an instance
(e.g. EulerSolver(100))
executes the code in init .

Accessing attributes
replace self by the name of
the instance.

Predefined syntax:
Use the keywords class,
(object): and init

Note that init takes self
as first argument when
defined, but this is skipped
when creating an instance. 24

Overview Scientific Python Reusing code Forthon

Classes: methods

Example of class definition

Example of use

Methods are functions
which can access the
attributes of a class.
→ The attributes do not
need to be passed as
arguments.

Syntax for definition
Pass self as first
arguments, then use
self. to access attributes

Syntax for calling
Prefix with name of the
instance, then skip self

in arguments

25

Overview Scientific Python Reusing code Forthon

Classes: task

Task 4

Rewrite euler.py so as to define a class EulerSolver

Replace the function initialize arrays by a corresponding
method init (self, N, T=10.) This method should define
N, x, t, dt as attributes.

Replace the functions euler integration and evaluate result

by methods with the same name respectively. These methods
should take no argument (besides self), but should use the
attributes through the self. syntax.

Compare again N=100 and N=200, by creating corresponding
instances of EulerSolver and calling their methods.

26

Overview Scientific Python Reusing code Forthon

References

Scipy lecture notes:
http://www.scipy-lectures.org/ (G. Varoquaux et al., 2015)

Python tutorial:
https://docs.python.org/3/tutorial/ (Python Software
foundation, 2016)

Forthon:
https://github.com/dpgrote/Forthon (D. Grote et al., 2016)

27

http://www.scipy-lectures.org/
https://docs.python.org/3/tutorial/
https://github.com/dpgrote/Forthon

	Overview of the Python language
	Python, numpy and matplotlib
	Reusing code: functions, modules, classes
	Faster computation: Forthon

