Electromagnetic Particle-In-Cell codes

Remi Lehe

Lawrence Berkeley National Laboratory (LBNL)

US Particle Accelerator School (USPAS) Summer Session

Self-Consistent Simulations of Beam and Plasma Systems S. M. Lund, J.-L. Vay, R. Lehe & D. Winklehner Colorado State U, Ft. Collins, CO, 13-17 June, 2016

EM-PIC vs. ES-PIC

Field solver

Deposition of J

Reference

When to use ES-PIC or EM-PIC

Electrostatics

$$\frac{\partial \boldsymbol{B}}{\partial t} \approx \mathbf{0}$$

$$oldsymbol{
abla} \cdot oldsymbol{E} = rac{
ho}{\epsilon_0} \qquad \left(
ightarrow oldsymbol{
abla}^2 \phi = -rac{
ho}{\epsilon_0}
ight)$$

Approximate set of equations:

- Magnetic fields vary **slowly**.
- Magnetic fields are typically externally generated. The magnetic fields generated by beams/plasma are neglected.
- Fast evolutions such as radiation/retardation effects are neglected.

Electromagnetics

$$\nabla \cdot \boldsymbol{E} = \frac{\rho}{\epsilon_0}$$
 $\nabla \times \boldsymbol{E} = -\frac{\partial \boldsymbol{B}}{\partial t}$

$$\nabla \cdot \boldsymbol{B} = \boldsymbol{0}$$
 $\nabla \times \boldsymbol{B} = \mu_0 \boldsymbol{j} + \frac{1}{c^2} \frac{\partial \boldsymbol{E}}{\partial t}$

Full set of equations:

- Self-consistently includes magnetic fields generated by the beams/plasmas.
- Supports **fast** evolution of fields and esp. retardation/radiation effects

Electromagnetic Particle-In-Cell codes: Outline

- 1 Electromagnetic PIC vs. electrostatic PIC
 - When to use electrostatic or electromagnetic PIC
 - The PIC loop in electrostatic and electromagnetic PIC
- 2 Finite-difference electromagnetic field solvers
 - Staggering in time
 - Staggering in space
 - The equations $\nabla \cdot \mathbf{B} = 0$ and $\nabla \cdot \mathbf{E} = \rho/\epsilon_0$
- 3 Current deposition and continuity equation
 - Direct current deposition and continuity equation
 - Boris correction
 - Charge-conserving deposition

EM-PIC vs. ES-PIC

Field solver

Deposition of J

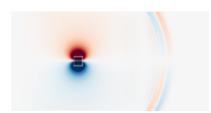
References

When to use ES-PIC or EM-PIC

Intuitive examples (animations)



- The particles are **slow** compared to c.
- The fields change adiabatically and depend only on the instantaneous positions of the particles.
- \rightarrow Electrostatic PIC is OK



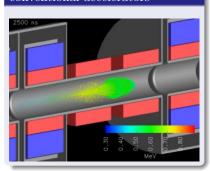
- The particles move **close to** *c*, and accelerate abruptly.
- The fields depend on the **history** of the particles (radiation effects)
- \rightarrow Electromagnetic PIC is needed

3

When to use ES-PIC or EM-PIC

Example using electrostatic PIC:

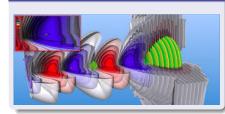
Sub-GeV acceleration of ions in conventional accelerators



• The ions are slower than c.

Example using electromagnetic PIC:

Laser-driven acceleration of electrons in plasmas

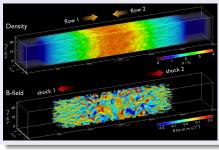


- Presence of radiation (the laser)
- The electrons move close to c.

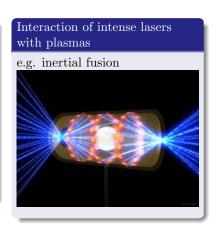
When to use ES-PIC or EM-PIC

Other examples using electromagnetic PIC

Electromagnetic plasma instabilities e.g. collisionless astrophysical shocks



• Capturing the **self-consistent** evolution of the \boldsymbol{B} field is key.



• Presence of radiation (lasers)

EM-PIC vs. ES-PIC

Field solver in ES-PIC and EM-PIC

Electrostatic field solver

$$oldsymbol{
abla}^2\phi = -rac{
ho}{\epsilon_0} \qquad oldsymbol{E} = -oldsymbol{
abla}\phi$$

The fields are recalculated from **scratch** at each timestep, from the **current** particle charge density. (no dependence on the history)

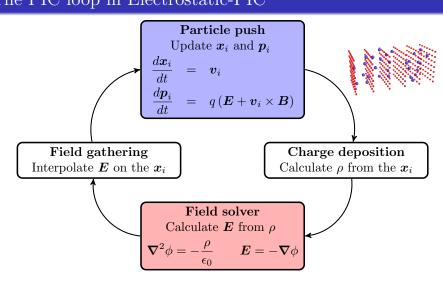
Electromagnetic field solver

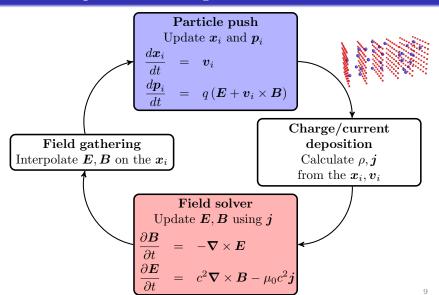
$$\frac{\partial \boldsymbol{B}}{\partial t} = -\boldsymbol{\nabla} \times \boldsymbol{E}$$

$$\frac{\partial \boldsymbol{E}}{\partial t} = c^2 \boldsymbol{\nabla} \times \boldsymbol{B} - \mu_0 c^2 \boldsymbol{j}$$

The fields are **updated** at each timestep.

EM-PIC vs. ES-PIC Deposition of J The PIC loop in Electrostatic-PIC





Electromagnetic Particle-In-Cell codes: Outline

- Electromagnetic PIC vs. electrostatic PIC
 - When to use electrostatic or electromagnetic PIC
 - The PIC loop in electrostatic and electromagnetic PIC
- 2 Finite-difference electromagnetic field solvers
 - Staggering in time
 - Staggering in space
 - The equations $\nabla \cdot \mathbf{B} = 0$ and $\nabla \cdot \mathbf{E} = \rho/\epsilon_0$
- 3 Current deposition and continuity equation
 - Direct current deposition and continuity equation
 - Boris correction
 - Charge-conserving deposition

11

Staggering in time

Reminder: (Monday's Overview of Basic Numerical Methods)

Centered discretization of derivatives is more accurate

Non-centered discretization

$$\frac{\partial f}{\partial t}\Big|_{n} = \frac{f_{n+1} - f_{n}}{\Delta t} + \mathcal{O}(\Delta t)$$

$$\frac{\partial f}{\partial t}\Big|_{n}$$

$$\xrightarrow{n\Delta t} \xrightarrow{(n+1)\Delta t} \xrightarrow{t}$$

Centered discretization

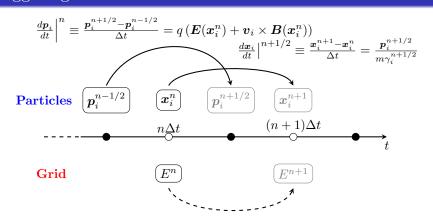
$$\frac{\partial f}{\partial t}\Big|_{n} = \frac{f_{n+1} - f_{n}}{\Delta t} + \mathcal{O}(\Delta t) \qquad \frac{\partial f}{\partial t}\Big|_{n} = \frac{f_{n+1/2} - f_{n-1/2}}{\Delta t} + \mathcal{O}(\Delta t^{2})$$

$$\frac{\partial f}{\partial t}\Big|_{n} \qquad \frac{\partial f}{\partial t}\Big|_{n}$$

$$\frac{\partial f}{\partial t}\Big|_{n} \qquad \frac{\partial f}{\partial t}\Big|_{n}$$

$$\frac{\partial f}{\partial t}\Big|_{n} \qquad \frac{\partial f}{\partial t}\Big|_{n}$$

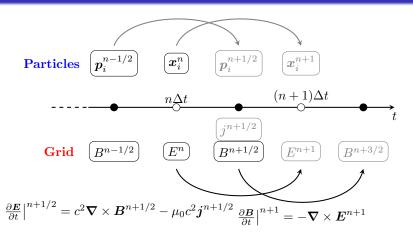
Staggering in time



12

- How to discretize $\frac{\partial \mathbf{E}}{\partial t} = c^2 \nabla \times \mathbf{B} \mu_0 c^2 \mathbf{j}$ in time?
- How to stagger E, B and j?

Staggering in time

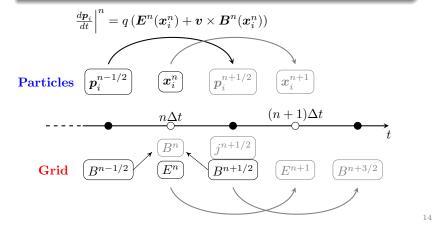


- \bullet **E** is defined at integer timestep.
- \bullet **B** and **j** are defined at half-integer timestep.

Staggering in time

Implication for field gathering

The particle pusher requires \boldsymbol{B} at time $n\Delta t$. This is obtained by averaging $B^{n+1/2}$ and $B^{n-1/2}$.



M-PIC vs. ES-PIC

13

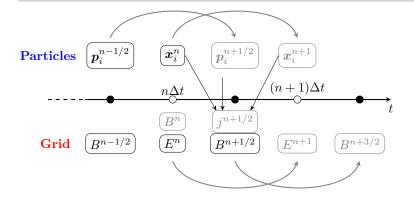
15

Field solvers Deposition of J

Staggering in time

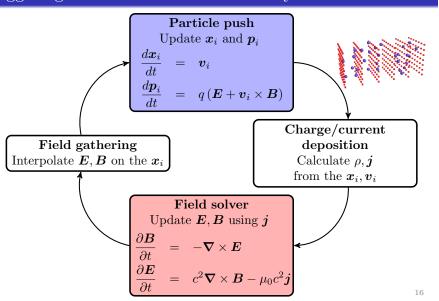
Implication for current deposition

The current should be deposited at time $(n+1/2)\Delta t$. This is done by using the particle's $v_i^{n+1/2}$ and some combination of x_i^n and x_i^{n+1} . (See Section 3)

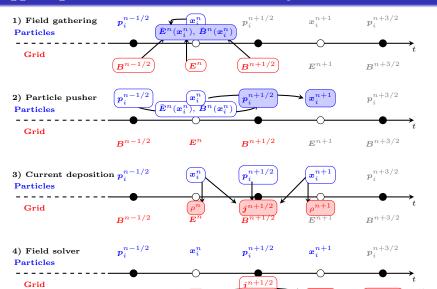


Field solvers

Staggering in time: the full EM-PIC cycle



Staggering in time: the full EM-PIC cycle



 $B^{n-1/2}$ $E^{n+1/2}$ $E^{n+1/2}$ $E^{n+1/2}$ 17

EM-PIC vs. ES-PIC

Field solvers

Deposition of

References

Staggering in space (1D)

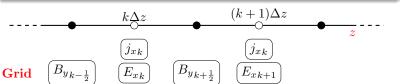
1D discretized Maxwell equations for E_x and B_y

$$i.e. \frac{B_{y}|_{k+\frac{1}{2}}^{n} - B_{y}|_{k+\frac{1}{2}}^{n-\frac{1}{2}}}{\Delta t} = -\partial_{z}E_{x}|_{k+\frac{1}{2}}^{n}$$

$$i.e. \frac{B_{y}|_{k+\frac{1}{2}}^{n+\frac{1}{2}} - B_{y}|_{k+\frac{1}{2}}^{n-\frac{1}{2}}}{\Delta t} = -\left(\frac{E_{x}|_{k+1}^{n} - E_{x}|_{k}^{n}}{\Delta z}\right)$$

$$\partial_{t}E_{x}|_{k}^{n+\frac{1}{2}} = -c^{2}\partial_{z}B_{y}|_{k}^{n+\frac{1}{2}} - \mu_{0}c^{2}j_{x}|_{k}^{n+\frac{1}{2}}$$

$$i.e. \frac{E_{x}|_{k}^{n+1} - E_{x}|_{k}^{n}}{\Delta t} = -c^{2}\left(\frac{B_{y}|_{k+\frac{1}{2}}^{n+\frac{1}{2}} - B_{y}|_{k-\frac{1}{2}}^{n+\frac{1}{2}}}{\Delta z}\right) - \mu_{0}c^{2}j_{x}|_{k}^{n+\frac{1}{2}}$$



Staggering in space (1D)

To illustrate staggering in space, let us consider a **simplified case** where the fields vary only along z (1D case).

1D Maxwell equations for E_x and B_y

$$\begin{cases} \frac{\partial \boldsymbol{B}}{\partial t} &= -\boldsymbol{\nabla} \times \boldsymbol{E} \\ \frac{\partial \boldsymbol{E}}{\partial t} &= c^2 \boldsymbol{\nabla} \times \boldsymbol{B} - \mu_0 c^2 \boldsymbol{j} \end{cases} \rightarrow \begin{cases} \frac{\partial B_y}{\partial t} &= -\frac{\partial E_x}{\partial z} \\ \frac{\partial E_x}{\partial t} &= -c^2 \frac{\partial B_y}{\partial z} - \mu_0 c^2 j_x \end{cases}$$

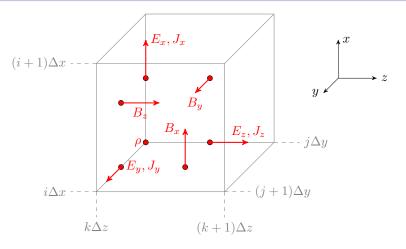
(demonstration on the white board)

- How to discretize these equations?
- How to stagger E_x , B_y , j_x ?

18

Staggering in space (3D): the Yee grid

Field solvers



The different components of the different fields are staggered, so that all derivatives in the Maxwell equations are centered (Yee, 1966).

Staggering in space (3D): the Yee grid

Field	Position in space and time				Notation
	X	У	\mathbf{z}	\mathbf{t}	
E_x	$(i+\frac{1}{2})\Delta x$	$j\Delta y$	$k\Delta z$	$n\Delta t$	$E_x^n_{i+\frac{1}{2},j,k}$
E_y	$i\Delta x$	$(j+\frac{1}{2})\Delta y$	$k\Delta z$	$n\Delta t$	$E_{y_{i,j+\frac{1}{2},k}}^n$
E_z	$i\Delta x$	$j\Delta y$	$(k+\frac{1}{2})\Delta z$	$n\Delta t$	$E_{z_{i,j,k+\frac{1}{2}}}^n$
B_x	$i\Delta x$	$(j+\frac{1}{2})\Delta y$	$(k+\frac{1}{2})\Delta z$	$(n+\frac{1}{2})\Delta t$	$B_{x_{i,j+\frac{1}{2},k+\frac{1}{2}}}^{n+\frac{1}{2}}$
B_y	$(i+\frac{1}{2})\Delta x$	$j\Delta y$	$(k+\frac{1}{2})\Delta z$	$(n+\frac{1}{2})\Delta t$	$B_{y}^{n+\frac{1}{2}}_{i+\frac{1}{2},j,k+\frac{1}{2}}$
B_z	$(i+\frac{1}{2})\Delta x$	$(j+\frac{1}{2})\Delta y$	$k\Delta z$	$(n + \frac{1}{2})\Delta t$	$B_{z_{i+\frac{1}{2},j+\frac{1}{2},k}}^{n+\frac{1}{2}}$
ho	$i\Delta x$	$j\Delta y$	$k\Delta z$	$n\Delta t$	$ ho_{i,j,k}^n$
j_x	$(i + \frac{1}{2})\Delta x$	$j\Delta y$	$k\Delta z$	$(n+\frac{1}{2})\Delta t$	$j_x^{n+\frac{1}{2}}_{i+\frac{1}{2},j,k}$
j_y	$i\Delta x$	$(j+\frac{1}{2})\Delta y$	$k\Delta z$	$(n+\frac{1}{2})\Delta t$	$j_{y_{i,j+\frac{1}{2},k}}^{n+\frac{1}{2}}$
j_z	$i\Delta x$	$j\Delta y$	$(k + \frac{1}{2})\Delta z$	$(n+\frac{1}{2})\Delta t$	$j_{z_{i,j,k+\frac{1}{2}}}^{n+\frac{1}{2}}$

21

EM-PIC vs. ES-PIC

Field solver

Deposition of

Reference

The equations $\nabla \cdot \boldsymbol{B} = 0$ and $\nabla \cdot \boldsymbol{E} = \rho/\epsilon_0$

Gauss law for magnetic field

$$\nabla \cdot \boldsymbol{B} = 0$$

$$\partial_x B_x \Big|_{i+\frac{1}{2}, j+\frac{1}{2}, k+\frac{1}{2}}^{n+\frac{1}{2}} + \partial_y B_y \Big|_{i+\frac{1}{2}, j+\frac{1}{2}, k+\frac{1}{2}}^{n+\frac{1}{2}} + \partial_z B_z \Big|_{i+\frac{1}{2}, j+\frac{1}{2}, k+\frac{1}{2}}^{n+\frac{1}{2}} = 0$$

Gauss law

$$\nabla \cdot \boldsymbol{E} = \frac{\rho}{\epsilon_0}$$

$$\partial_x E_x|_{i,j,k}^n + \partial_y E_y|_{i,j,k}^n + \partial_z E_z|_{i,j,k}^n = \frac{\rho_{i,j,k}^n}{\epsilon_0}$$

These equations are not used during the PIC loop!

(Since we use only $\partial_t \mathbf{E} = c^2 \nabla \times \mathbf{B} - \mu_0 c^2 \mathbf{j}$ and $\partial_t \mathbf{B} = \nabla \times \mathbf{E}$ to update the fields.)

 \rightarrow Are $\nabla \cdot \boldsymbol{B} = 0$ and $\nabla \cdot \boldsymbol{E} = \rho/\epsilon_0$ actually satisfied?

EM-PIC vs. ES-PIC Field solvers Deposition of J Referen

Staggering in space (3D): the Maxwell equations

Maxwell-Ampère $\partial_t E_x \Big|_{i+\frac{1}{2},j,k}^{n+\frac{1}{2}} = c^2 \partial_y B_z \Big|_{i+\frac{1}{2},j,k}^{n+\frac{1}{2}} - c^2 \partial_z B_y \Big|_{i+\frac{1}{2},j,k}^{n+\frac{1}{2}} - \mu_0 c^2 j_x {}_{i+\frac{1}{2},j,k}^{n+\frac{1}{2}}$

$$\partial_t E_y \Big|_{i,j+\frac{1}{2},k}^{n+\frac{1}{2}} = c^2 \partial_z B_x \Big|_{i,j+\frac{1}{2},k}^{n+\frac{1}{2}} - c^2 \partial_x B_z \Big|_{i,j+\frac{1}{2},k}^{n+\frac{1}{2}} - \mu_0 c^2 j_y \Big|_{i,j+\frac{1}{2},k}^{n+\frac{1}{2}}$$

$$\partial_t E_z \Big|_{i,j,k+\frac{1}{2}}^{n+\frac{1}{2}} = c^2 \partial_x B_y \Big|_{i,j,k+\frac{1}{2}}^{n+\frac{1}{2}} - c^2 \partial_y B_x \Big|_{i,j,k+\frac{1}{2}}^{n+\frac{1}{2}} - \mu_0 c^2 j_z \Big|_{i,j,k+\frac{1}{2}}^{n+\frac{1}{2}}$$

$$\partial_t B_x \big|_{i,j+\frac{1}{2},k+\frac{1}{2}}^n = -\partial_y E_z \big|_{i,j+\frac{1}{2},k+\frac{1}{2}}^n + \partial_z E_y \big|_{i,j+\frac{1}{2},k+\frac{1}{2}}^n$$

$$\partial_t B_y \big|_{i+\frac{1}{2},j,k+\frac{1}{2}}^n = -\partial_z E_x \big|_{i+\frac{1}{2},j,k+\frac{1}{2}}^n + \partial_x E_z \big|_{i+\frac{1}{2},j,k+\frac{1}{2}}^n$$

$$\partial_t B_z \big|_{i+\frac{1}{2},j+\frac{1}{2},k}^n = -\partial_x E_y \big|_{i+\frac{1}{2},j+\frac{1}{2},k}^n + \partial_y E_x \big|_{i+\frac{1}{2},j+\frac{1}{2},k}^n$$

$$\partial_{t}F|_{i',j',k'}^{n'} \equiv \frac{F_{i',j',k'}^{n'+\frac{1}{2}} - F_{i',j',k'}^{n'-\frac{1}{2}}}{\Delta t} \quad \partial_{x}F|_{i',j',k'}^{n'} \equiv \frac{F_{i'+\frac{1}{2},j',k'}^{n'} - F_{i'-\frac{1}{2},j',k'}^{n'}}{\Delta x}$$

$$\partial_{y}F|_{i',j',k'}^{n'} \equiv \frac{F_{i',j'+\frac{1}{2},k'}^{n'} - F_{i',j'-\frac{1}{2},k'}^{n'}}{\Delta y} \quad \partial_{z}F|_{i',j',k'}^{n'} \equiv \frac{F_{i',j',k'+\frac{1}{2}}^{n'} - F_{i',j',k'-\frac{1}{2}}^{n'}}{\Delta z}$$

EM-PIC vs. ES-PIC

Field solv

Deposition of

Reference

The equation $\nabla \cdot \boldsymbol{B} = 0$

Provided that:

- $\nabla \cdot \boldsymbol{B} = 0$ is satisfied initially
- $\frac{\partial \mathbf{B}}{\partial t} = -\mathbf{\nabla} \times \mathbf{E}$ is satisfied at all time.

then:
$$\frac{\partial (\boldsymbol{\nabla} \cdot \boldsymbol{B})}{\partial t} = \boldsymbol{\nabla} \cdot \frac{\partial \boldsymbol{B}}{\partial t} = \boldsymbol{\nabla} \cdot (-\boldsymbol{\nabla} \times \boldsymbol{E}) = 0$$
i.e. $\boldsymbol{\nabla} \cdot \boldsymbol{B} = 0$ at all time

This remains true for the discretized operators.

Conservation of $\nabla \cdot \boldsymbol{B}$

Updating B with the discretized Maxwell-Faraday equation preserves

$$\partial_x B_x|_{i+\frac{1}{2},j+\frac{1}{2},k+\frac{1}{2}}^{n+\frac{1}{2}} + \partial_y B_y|_{i+\frac{1}{2},j+\frac{1}{2},k+\frac{1}{2}}^{n+\frac{1}{2}} + \partial_z B_z|_{i+\frac{1}{2},j+\frac{1}{2},k+\frac{1}{2}}^{n+\frac{1}{2}} = 0$$

eld solvers

ition of J Refe

The equation $\nabla \cdot \boldsymbol{E} = \rho/\epsilon_0$

Provided that:

- $\nabla \cdot \boldsymbol{E} = \rho/\epsilon_0$ is satisfied initially
- $\frac{\partial \mathbf{E}}{\partial t} = -c^2 \mathbf{\nabla} \times \mathbf{B} \mu_0 c^2 \mathbf{j}$ is satisfied at all time.

then:
$$\frac{\partial}{\partial t} \left(\boldsymbol{\nabla} \cdot \boldsymbol{E} - \frac{\rho}{\epsilon_0} \right) = -\frac{1}{\epsilon_0} \left(\frac{\partial \rho}{\partial t} + \boldsymbol{\nabla} \cdot \boldsymbol{j} \right)$$

i.e.
$$\nabla \cdot \boldsymbol{E} = \frac{\rho}{\epsilon_0}$$
 at all time, provided that $\frac{\partial \rho}{\partial t} + \nabla \cdot \boldsymbol{j} = 0$

Conservation of $\nabla \cdot \boldsymbol{E} = \rho/\epsilon_0$

Updating E with the discretized Maxwell-Ampère equation preserves

$$\partial_x E_x|_{i,j,k}^n + \partial_y E_y|_{i,j,k}^n + \partial_z E_z|_{i,j,k}^n = \frac{\rho_{i,j,k}^n}{\epsilon_0}$$

provided that the continuity equation is satisfied at each iteration:

$$\partial_t \rho|_{i,j,k}^{n+\frac{1}{2}} + \partial_x j_x|_{i,j,k}^{n+\frac{1}{2}} + \partial_y j_y|_{i,j,k}^{n+\frac{1}{2}} + \partial_z j_z|_{i,j,k}^{n+\frac{1}{2}} = 0$$

Electromagnetic Particle-In-Cell codes: Outline

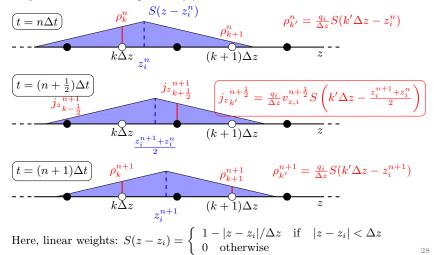
- 1 Electromagnetic PIC vs. electrostatic PIC
 - When to use electrostatic or electromagnetic PIC
 - The PIC loop in electrostatic and electromagnetic PIC
- 2 Finite-difference electromagnetic field solvers
 - Staggering in time
 - Staggering in space
 - The equations $\nabla \cdot \boldsymbol{B} = 0$ and $\nabla \cdot \boldsymbol{E} = \rho/\epsilon_0$
- 3 Current deposition and continuity equation
 - Direct current deposition and continuity equation
 - Boris correction
 - Charge-conserving deposition

Charge/current deposition: reminder x_i^{n+1} $p_i^{n+3/2}$ 1) Field gathering Particles $\bar{E}^n(\mathbf{x}_i^n), \bar{B}^n(\mathbf{x}_i^n)$ Grid $B^{n+1/2}$ $B^{n+3/2}$ $p_i^{n+3/2}$ 2) Particle pusher Particles Grid $B^{n-1/2}$ $B^{n+1/2}$ E^{n+1} \mathbf{E}^n $B^{n+3/2}$ $p_i^{n+3/2}$ 3) Current deposition $p^{n-1/2}$ Particles Grid $B^{n-1/2}$ $B^{n+3/2}$ $p_i^{n+1/2}$ $p_i^{n+3/2}$ \boldsymbol{x}_{i}^{n} 4) Field solver Particles Grid $B^{n-1/2}$

M-PIC vs. ES-PIC Field solvers **Deposition of J** References

Direct current deposition: 1D example

Direct current deposition: The current j is deposited with the same shape factor as the charge density ρ .



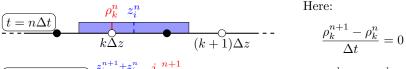
Direct current deposition and continuity equation

1D continuity equation

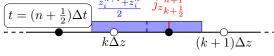
$$\frac{\partial \rho}{\partial t} + \frac{\partial j_z}{\partial z} = 0 \qquad \rightarrow \qquad \frac{\rho_k^{n+1} - \rho_k^n}{\Delta t} + \frac{j_{z_{k+\frac{1}{2}}}^{n+\frac{1}{2}} - j_{z_{k-\frac{1}{2}}}^{n+\frac{1}{2}}}{\Delta z} = 0$$

Does direct deposition satisfy the continuity equation?

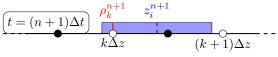
Example with nearest grid point, i.e. $S(z-z_i)=1$ if $|z-z_i|<\Delta z/2$



$$\frac{\rho_k^{n+1} - \rho_k^n}{\Delta t} = 0$$



$$\frac{jz_{k+\frac{1}{2}}^{n+\frac{1}{2}} - jz_{k-\frac{1}{2}}^{n+\frac{1}{2}}}{\Delta z} \neq$$



29

31

Direct current deposition and continuity equation

Direct current deposition does not satisfy the continuity equation.

Reminder:

Updating E with the discretized Maxwell-Ampère equation preserves

$$oldsymbol{
abla}\cdotoldsymbol{E}=rac{
ho}{\epsilon_0}$$

provided that the continuity equation is satisfied at each iteration.

The PIC loop with **direct current deposition** does not preserve

$$oldsymbol{
abla} \cdot oldsymbol{E} = rac{
ho}{\epsilon_0}$$

Two alternative solutions:

- Boris correction: correcting $\nabla \cdot E$ at each iteration.
- Use a charge-conserving deposition instead of direct deposition.

30

M-PIC vs. ES-PIC

Deposition of J

Deposition of J

Boris correction

Boris correction

At each iteration, after updating E, correct it using

$$m{E}' = m{E} - m{\nabla}\delta\phi \qquad ext{with} \qquad m{\nabla}^2\delta\phi = m{\nabla}\cdotm{E} - rac{
ho}{\epsilon_0}$$

The new field E' does satisfy (demonstration on the white board)

$$\mathbf{\nabla} \cdot \mathbf{E}' = \frac{\rho}{\epsilon_0}$$

Practical implementation

The discretized version of

$$\boldsymbol{\nabla}^2 \delta \phi = \boldsymbol{\nabla} \cdot \boldsymbol{E} - \frac{\rho}{\epsilon_0}$$

needs to be solved on the grid at each iteration, so as to obtain $\delta \phi$. \rightarrow Can be done using techniques from electrostatic PIC (see previous lecture), e.g. direct matrix, spectral or relaxation methods

Charge-conserving deposition

Charge-conserving deposition

The current j is deposited in such a way that it automatically satisfies the continuity equation

$$\partial_t \rho |_{i,j,k}^{n+\frac{1}{2}} + \partial_x j_x |_{i,j,k}^{n+\frac{1}{2}} + \partial_y j_y |_{i,j,k}^{n+\frac{1}{2}} + \partial_z j_z |_{i,j,k}^{n+\frac{1}{2}} = 0$$

Several algorithms exist, e.g.

- Esirkepov (Esirkepov, 2001)
- ZigZag (Umeda et al., 2003)

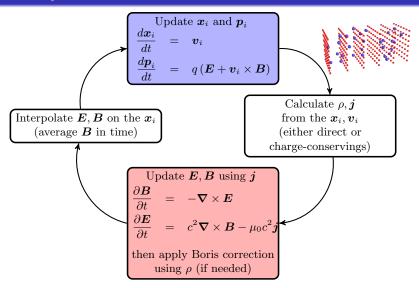
In these cases, the PIC loop automatically preserves

$$oldsymbol{
abla} \cdot oldsymbol{E} = rac{
ho}{\epsilon_0}$$

The Boris correction is not needed.

EM-PIC vs. ES-PIC Field solvers Deposition of J Reference

Summary



EM-PIC vs. ES-PIC Field solvers Deposition of J References

References

Esirkepov, T. (2001). Exact charge conservation scheme for particle-in-cell simulation with an arbitrary form-factor. *Computer Physics Communications*, 135(2):144 – 153.

Umeda, T., Omura, Y., Tominaga, T., and Matsumoto, H. (2003). A new charge conservation method in electromagnetic particle-in-cell simulations. Computer Physics Communications, 156(1):73 – 85.

Yee, K. (1966). Numerical solution of initial boundary value problems involving maxwell's equations in isotropic media. *Antennas and Propagation*, *IEEE Transactions on*, 14(3):302 –307.

34

33