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EM-PIC vs. ES-PIC

When to use ES-PIC or EM-PIC

Electromagnetic Particle-In-Cell codes: Outline

© Electromagnetic PIC vs. electrostatic PIC
@ When to use electrostatic or electromagnetic PIC
@ The PIC loop in electrostatic and electromagnetic PIC

© Finite-difference electromagnetic field solvers

o Staggering in time
@ Staggering in space

@ The equations V- B =0and V- E = p/eg

© Current deposition and continuity equation
@ Direct current deposition and continuity equation

@ Boris correction

o Charge-conserving deposition

EM-PIC vs. ES-PIC

When to use ES-PIC or EM-PIC
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Approximate set of equations:
@ Magnetic fields vary slowly.

@ Magnetic fields are typically
externally generated. The
magnetic fields generated by
beams/plasma are neglected.

@ Fast evolutions such as
radiation/retardation effects
are neglected.
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Full set of equations:

@ Self-consistently includes
magnetic fields generated by
the beams/plasmas.

@ Supports fast evolution of
fields and esp.
retardation/radiation effects

Intuitive examples (animations)

@ The particles are slow compared
to c.

@ The fields change adiabatically
and depend only on the
instantaneous positions of the
particles.

— Electrostatic PIC is OK

@ The particles move close to ¢, and
accelerate abruptly.

@ The fields depend on the history
of the particles (radiation effects)

— Electromagnetic PIC is needed



EM-PIC vs. ES-PIC

When to use ES-PIC or EM-PIC

EM-PIC vs. ES-PIC

When to use ES-PIC or EM-PIC

Example using electrostatic PIC: Example using electromagnetic PIC:

Sub-GeV acceleration of ions in
conventional accelerators

@ Presence of radiation (the
laser)

@ The electrons move close to c.

@ The ions are slower than c.

EM-PIC vs. ES-PIC

Field solver in ES-PIC and EM-PIC

Other examples using electromagnetic PIC

Interaction of intense lasers
with plasmas

Electromagnetic plasma instabilities

e.g. collisionless astrophysical shocks
e.g. inertial fusion

Density

B-field shock |

@ Capturing the self-consistent

evolution of the B field is key. @ Presence of radiation

(lasers) 6

EM-PIC vs. ES-PIC

The PIC loop in Electrostatic-PIC

Electrostatic field solver Electromagnetic field solver
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The fields are recalculated from ot ¢ % Hot J

scratch at each timestep, from the
current particle charge density.
(no dependence on the history)

The fields are updated at each
timestep.
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Field gathering Charge deposition
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EM-PIC vs. ES-PIC

Electromagnetic Particle-In-Cell codes: Outline

The PIC loop in Electromagnetic-PIC

Particle push
Update x; and p,

© Electromagnetic PIC vs. electrostatic PIC

dx; % @ When to use electrostatic or electromagnetic PIC
ar Y g @ The PIC loop in electrostatic and electromagnetic PIC
dp,
C q(E+v; x B)
dt © Finite-difference electromagnetic field solvers
Charge/current o Staggering in time
Field gathering deposition e Staggering in space
Interpolate E, B on the x; Calculate p, j @ The equations V- B =0and V- E = p/eg
from the x;, v;
( Fiold solver ) e Current deposition and continuity equation
Update E, B using j @ Direct current deposition and continuity equation
OB @ Boris correction
ot -V xE o Charge-conserving deposition
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Field solvers Field solvers

Staggering in time Staggering in time
dp n - pt‘b+1/2_p7‘171/2 n n
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n+1/2 o a:n+17a:” p@+1/2

d:l:i 7 i — T
Centered discretization of derivatives is more accurate />th\< At mAy T2

o 5 o 5 5 5 . — +1/2
Non-centered discretization Centered discretization Particles p x

nAt (n+1)At
g _ fn+1 - fn + O(At) % _ fn+1/2 fn—1/2 + O(Atz) —@ ® ® t
ot n At ot n At
Grid

of af N A
ot |, ot |, S .- -7
nAt (n +1)At nAt (n +1)At

—e . —e
In Jopr 0 fn—1/2 fn+1/2 t @ How to discretize %—f =2V x B — jpc%j in time?

@ How to stagger E, B and j7?



Field solvers

Staggering in time
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@ FE is defined at integer timestep.

@ B and j are defined at half-integer timestep.

Field solvers

Field solvers

Staggering in time

Implication for field gathering

The particle pusher requires B at time nAt.
This is obtained by averaging B"*'/2 and B"~1/2.

dp, "
dt

= q(E"(z}) + v x B"(z}))
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Field solvers

Staggering in time

Implication for current deposition

The current should be deposited at time (n + 1/2)A¢. This is done by

. ; 1/2 o ar
using the particle’s v]' " /? and some combination of x? and !t

(See Section 3)
Particles
—e

Staggering in time: the full EM-PIC cycle

Particle push
Update x; and p,

= v;
dt 2%
dp; t
% = ¢q(E+v; xB)
Charge/current
deposition

Field gathering
Interpolate E, B on the x;

Calculate p, j
from the x;, v;

f Field solver
Update E, B using j
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Field solvers

Staggering in time: the full EM-PIC cycle

1) Field gathering P,

Particles

E"(z}), B" (z])

____________ — @ zr

2) Particle pusher
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Particles E™ (=},
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Grid
Bn—1/2 E" Bn+1/2 Ent1 B 2
3) Current deposition p?71/2 w?Jrl p:’ 3/2
Particles
———————————— DA ~—
Grid ﬂn+1
Bn—1/2 B 7 B Bn+3/2
4) Field solver p;‘71/2 x] p;L+1/2 m;LJrl p: +3/2
Particles
———————————— —e ®
Grid jnt1/2 t
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Field solvers

Staggering in space (1D)

1D discretized Maxwell equations for F, and B,
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Field solvers

Staggering in space (1D)

To illustrate staggering in space, let us consider a simplified case

where the fields vary only along z (1D case).

1D Maxwell equations for F, and

OB __ 0B, __  QE,
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(demonstration on the white board)
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@ How to discretize these equations?

e How to stagger E,, By, j,7

Field solvers

Staggering in space (3D): the Yee grid
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The different components of the different fields are staggered, so that

all derivatives in the Maxwell equations are centered (Yee,

1966).



Field solvers

Field solvers

Staggering in space (3D): the Maxwell equations

Staggering in space (3D): the Yee grid

Field Position in space and time Notation Maxwell-Ampere
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Field solvers

Field solvers

The equations V- B =0and V- E = The equation V- B =0

Gauss law for magnetic field Provided that:
V-B=0 @ V. B =0 is satisfied initially
n+1 n+i n+i . 8B _ . . .
8sz|i+%2ﬁj+%’k+% + ayBy|i+;j+%’k+% + Bsz|i+;j+%’k+% =0 o %7 = —V x E is satisfied at all time.
» d(V - B) OB
Gauss law then : o \A e V- (-VXE)=0

j.e. V-B=0 atalltime

This remains true for the discretized operators.

'
_ Pijk ,
4,4,k € Conservation of V - B

Do Eul? sk + Oy Byl 4 + O ELI7

Updating B with the discretized Maxwell-Faraday equation preserves

These equations are not used during the PIC loop!
Since we use only O, E = >V x B — pc?j and ;B =V x E to n+t3 ntg ntg
1(1pdate the fields.) t g t ame|i+%’j+%vk+l e By|i+%vj+%7k+l +0:B; |1+ it =0

— Are V-B =0and V- E = p/¢; actually satisfied?




Field solvers

Electromagnetic Particle-In-Cell codes: Outline

The equation V - E = p/¢

Provided that:
@ V. E = p/ep is satisfied initially

o %8 — _?V x B — jiyc?j is satisfied at all time.
0 P 1 [9dp .
then : —(V-E-—)|=——|=—-+V_
e ot < 60) €0 <8t + J)
‘ P : : dp .
i.e. V.E=— atall time, provided that N +V-3=0
€0

Conservation of V - E = p/eg

Updating E with the discretized Maxwell-Ampere equation preserves

7
Pijk
n n n _ 5
O Ex|i i + OByl + O ELL = e

provided that the continuity equation is satisfied at each iteration:

n+%

n+% . n+% . n+% . _
8tp|i,j,k +8w]x|i,j,k +8y.]y|i,j,k +8z.7z‘i,j,k =0

Deposition of J

Charge/current deposition: reminder

© Electromagnetic PIC vs. electrostatic PIC
@ When to use electrostatic or electromagnetic PIC
@ The PIC loop in electrostatic and electromagnetic PIC

© Finite-difference electromagnetic field solvers
o Staggering in time
@ Staggering in space
@ The equations V- B =0and V- E = p/eg

© Current deposition and continuity equation
@ Direct current deposition and continuity equation
@ Boris correction
o Charge-conserving deposition

Deposition of J

Direct current deposition: 1D example

1) Field gathering p?71/2 1= p:‘ F1/2 .'1::y ! p:’ 3/2
Particles En(m?)v Bn(w?)
____________ T x X
. —e ° >,
Grid
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2) Particle pusher D p:' 3/2
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Grid
Bn—1/2 E" Bnt1/2 Ent1 Bn+3/2
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3) Current deposition p

Particles
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4) Field solver p;‘71/2 x] pl‘+1/2 m;LJrl 1):'7'i 2
Particles
———————————— —e ®
Grid jnt1/2 t

Direct current deposition: The current j is deposited with the same
shape factor as the charge density p.

n S(z — z)

n prr = FeS(K Az = 27)
: @ @

KAz ¢ (k+1)Az *—

n+1
%

1—|z—z|/Az if |z— 2z <Az

Here, linear weights: S(z — z;) = { 0 otherwise
28



Deposition of J

Direct current deposition and continuity equation

1D continuity equation
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Does direct deposition satisfy the continuity equation?
Example with nearest grid point, i.e. S(z — z;) = 1if |z — z;| < Az/2
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Deposition of J

Boris correction

Deposition of J

Direct current deposition and continuity equation

Direct current deposition does not satisfy the continuity equation.J

Reminder:
Updating E with the discretized Maxwell-Ampere equation preserves
v.E="
€0

provided that the continuity equation is satisfied at each iteration.

The PIC loop with direct current deposition does not preserve

V.Ezﬁ

€0

Two alternative solutions:
@ Boris correction: correcting V - E at each iteration.

@ Use a charge-conserving deposition instead of direct deposition.

Deposition of J

Charge-conserving deposition

Boris correction

At each iteration, after updating F, correct it using

V%=V -E- L
€0

E' =E—-Vép  with

The new field E’ does satisfy (demonstration on the white board)

v.E=L
€0

Practical implementation

The discretized version of

v%s=Vv.-E- L

€0
needs to be solved on the grid at each iteration, so as to obtain d¢.
— Can be done using techniques from electrostatic PIC (see previous
lecture), e.g. direct matrix, spectral or relaxation methods

Charge-conserving deposition

The current j is deposited in such a way that it automatically
satisfies the continuity equation

n+i . nt+3 . n+i . ntt
atp|i,j,l§ + az]oc|i,j,l§ + ay]y|i,j,1§ + azjz‘i,j,li =0

Several algorithms exist, e.g.
o Esirkepov (Esirkepov, 2001)
@ ZigZag (Umeda et al., 2003)

In these cases, the PIC loop automatically preserves

v.eE="

€0

The Boris correction is not needed.
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Deposition of J

Summary

Update z; and p,

d:l:i _ :

a v

dp; = q(E+v; x B)
dt

Calculate p, 5
from the x;, v;
(either direct or

charge-conservings)

Interpolate E, B on the x;
(average B in time)

Update E, B using j

0B

o2 _ E

e V x

OE

E = C2V x B — MOC2J

then apply Boris correction
using p (if needed)
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