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Electromagnetic Particle-In-Cell codes: Outline

@ Electromagnetic PIC vs. electrostatic PIC
@ When to use electrostatic or electromagnetic PIC
@ The PIC loop in electrostatic and electromagnetic PIC

© Finite-difference electromagnetic field solvers
e Staggering in time
@ Staggering in space
@ The equations V- B =0 and V - E = p/e¢

© Current deposition and continuity equation
@ Direct current deposition and continuity equation
@ Boris correction
@ Charge-conserving deposition



EM-PIC vs. ES-PIC

When to use ES-PIC or EM-PIC

Electrostatics Electromagnetics
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Approximate set of equations:
@ Magnetic fields vary slowly.

@ Magnetic fields are typically
externally generated. The
magnetic fields generated by
beams/plasma are neglected.

@ Fast evolutions such as
radiation /retardation effects
are neglected.
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Full set of equations:

@ Self-consistently includes
magnetic fields generated by
the beams/plasmas.

@ Supports fast evolution of
fields and esp.
retardation /radiation effects



EM-PIC vs. ES-PIC

When to use ES-PIC or EM-PIC

Intuitive examples (animations)

@ The particles are slow compared
to c.

@ The fields change adiabatically
and depend only on the
instantaneous positions of the
particles.

— Electrostatic PIC is OK

@ The particles move close to ¢, and
accelerate abruptly.

@ The fields depend on the history
of the particles (radiation effects)

— Electromagnetic PIC is needed



EM-PIC vs. ES-PIC

When to use ES-PIC or EM-PIC

Example using electrostatic PIC: Example using electromagnetic PIC:

Sub-GeV acceleration of ions in
conventional accelerators

Laser-driven acceleration of
electrons in plasmas

@ Presence of radiation (the
laser)

@ The electrons move close to c.

@ The ions are slower than c.



EM-PIC vs. ES-PIC

When to use ES-PIC or EM-PIC

Other examples using electromagnetic PIC

Electromagnetic plasma instabilities Interaction of intense lasers

e.g. collisionless astrophysical shocks with plasmas

e.g. inertial fusion

@ Capturing the self-consistent
evolution of the B field is key. @ Presence of radiation
(lasers)



EM-PIC vs. ES-PIC

Field solver in ES-PIC and EM-PIC

Electrostatic field solver Electromagnetic field solver
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The fields are recalculated from o VvV~ o€ J

scratch at each timestep, from the
current particle charge density.
(no dependence on the history)

The fields are updated at each
timestep.



EM-PIC vs. ES-PIC

The PIC loop in Electrostatic-PIC

Particle push
Update x; and p;

daz; S
dt p— ’Ui %@ % 2t oe S,
i,
L CZ@ = a(B+vixB)
Field gathering Charge deposition
Interpolate E on the x; Calculate p from the x;

Field solver

Calculate E from p
vie=-L E=_vy
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EM-PIC vs. ES-PIC

The PIC loop in Electromagnetic-PIC

f Particle push )
Update x; and p;
dazi —
a
WDi _ (E+vixB)
\, dt B q ' J
Charge/current
Field gathering deposition
Interpolate E, B on the x; Calculate p, 3
\ from the x;, v, )
( Field solver )
Update E, B using )
0B
— = —VXxFE
ot
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Field solvers

Staggering in time

Reminder: (Monday’s Ouverview of Basic Numerical Methods)

Centered discretization of derivatives is more accurate

Non-centered discretization Centered discretization
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Field solvers

Staggering in time
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@ How to discretize %—]f = 2V x B — poc?j in time?

@ How to stagger £, B and 37
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Field solvers

Staggering in time

-n+1/2
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@ F is defined at integer timestep.

@ B and 3 are defined at half-integer timestep.
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Field solvers

Staggering in time

Implication for field gathering

The particle pusher requires B at time nAt.
This is obtained by averaging B"t1/2 and B" /2.

Wi = g (B"(a}) + v x B"(x}))

dt

14



Field solvers

Staggering in time

Implication for current deposition

The current should be deposited at time (n + 1/2)At. This is done by

using the particle’s v, AL

(See Section 3)

and some combination of 7' and x

Particles p?’_l/ 2 x;
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Field solvers

Staggering in time: the full EM-PIC cycle

f Particle push )
Update x; and p;
dazi
— ’Ui
dt
dp .
L CZ@ = a(B+vixB)
Charge/current
Field gathering deposition
Interpolate E, B on the x; Calculate p, 3
\ from the x;, v, )
( Field solver )
Update E, B using )
0B
— = —VXxE
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Field solvers

Staggering in time: the full EM-PIC cycle

1) Field gathering p?_l/Q r—@ p?—’—l/Q a:?—i_l p?+3/2
Particles [En (a:?), Bn(a’?)]
____________ . 2T 28 Q AL

Grid
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2) Particle pusher

w;z—i—l ';7,+3/2
Particles
———————————— O ~—>
Grid
gn—1/2 En gnt+1/2 g+l gn+3/2
3) Current deposition p:"_l/Q xlt ?+3/2
Particles
———————————— ° ~—>
Grid
gn—1/2 En Bn+3/2
4) Field solver p?_l/Q x; ?4_1/2 :c;H—l ?—’—3/2
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Field solvers

Staggering in space (1D)

To illustrate staggering in space, let us consider a simplified case
where the fields vary only along z (1D case).

1D Maxwell equations for E, and B,

0B __ 0B, _  0OE,
5t — VxXE e
%
ot € V X B — jioc”g 5 = —C 5, — HoC Jx

(demonstration on the white board)

LA~ (k+1)Az
O ° O ° S

@ How to discretize these equations?

@ How to stagger E,, By, j.? i,



Field solvers

Staggering in space (1D)

1D discretized Maxwell equations for £, and B,
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Field solvers

Staggering in space (3D): the Yee grid

A2, Iy x
(1 +1)Ax - --
0 Z
/ Y
o——> B,
B
BZET E., J,
P C = --- jAy
E,, J, l
IAT -~ - ---(J +1)Ay
kAz (k+1)Az

The different components of the different fields are staggered, so that

all derivatives in the Maxwell equations are centered (Yee, 1966).
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Field solvers

Staggering in space (3D): the Yee grid

Field Position in space and time Notation
X y Z t
E; (i + 3)Az JAY kAz nAt Ex?;r%,j’k
E, iAx (J+ 2)Ay kAz nAt Byl 1,
J+ 5
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. n+z
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.tz
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Field solvers

Staggering in space (3D): the Maxwell equations
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Field solvers

The equations V- B =0and V- E = p/¢

Gauss law for magnetic field

V-B=0
n—i—% n—i—% n—|—% .
8$Bx|i+%,j+%,k+% ™ ayBylz‘+%,j+%,k+% ™ 8ZBz|z'+%,j+%,k+% =t

_4
Gauss law

v.E="L

€0
Oy Ball's o+ Oy Byl o+ OB |2, = Pt
2Bzl + OByl sk + 0B = 0

These equations are not used during the PIC loop!

(Since we use only O FE = ¢*V x B — pgc?*j and 0;B =V x E to
update the fields.)

— Are V-B =0and V - E = p/¢y actually satisfied?
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Field solvers

The equation V - B =0

Provided that:
@ V . B = 0 is satisfied initially

[ %—]f — —V x F is satisfied at all time.
8(V-B) 0B
h : — . ——— — - [ — E —
then 5 V Yy V- (-VXE)=0

1.e. V- -B =0 atall time

This remains true for the discretized operators.

Conservation of V - B

Updating B with the discretized Maxwell-Faraday equation preserves

n+ i n-+ i
3 1 T 8sz| ’

n—l—%
8$B$|i+%,j—{—%,k—|—% + a?JBZJ|
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Field solvers

The equation V - E = p/eg

Provided that:
@ V- FE = p/e is satisfied initially

o £ — _2V x B — pyc?j is satisfied at all time.

ot
. 0 p\ 1 (0p
then : at(V-E—EO)— (8t+v ])

0
r.e. V-FE= £ at all time, provided that a—'z +V-72=0
€0

Conservation of V - E = p/eg

Updating E with the discretized Maxwell-Ampere equation preserves

n
Pijk

Os By |V 1o + Oy By

+ 0, F
1,7,k Z|7,jk €o

provided that the continuity equation is satisfied at each iteration:

n+ 4 +1
Ouplid 2 + Oualinf + Oydyli T +0uiliiE =0
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Deposition of J

Charge/current deposition: reminder

1) Field gathering p?_l/Q m pn+1/2 a:?—i_l ¥
Particles [En(wn)a Bn(a’ )]

____________ 27
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2) Particle pusher

(2 7
Particles
———————————— O *—
Grid
Bn—1/2 E™ Bn—|—1/2 ETL—|—1 B'n,+3/2
3) Current deposition p:"_l/Q xlt ?+3/2
Particles
———————————— ® *—
Grid
Bn—1/2 E™ B’r7,+3/2
4) Field solver p?_l/Q x; ?4_1/2 :c;H—l ?—’—3/2
Particles
____________ .
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Deposition of J

Direct current deposition: 1D example

Direct current deposition: The current j is deposited with the same
shape factor as the charge density p.

n S(z—2")

[ G +WPZ/H L S(K' Az — 20
- Lo O ° - -

kAz el (k+1)Az 2

1—|z—zi|/Az if |z—2z)| <Az

Here, linear weights: S(z — z;) = { 0 otherwise
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Deposition of J

Direct current deposition and continuity equation

1D continuity equation

1 1
1
2

9p | 9j. _ A L a MLt

5% 8z . At T Az

Does direct deposition satisfy the continuity equation?
Example with nearest grid point, i.e. S(z — z;) = 1if |z — 2z;| < Az/2

[t Atj Pl 2m Here:
=n l n n
N ® Ot o O - - Pk+1_pk_0
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N ETE g, 1 . n+i . n+ i
[t = (n+3)Aat| 2 h Jopyd —dep
———e o— 1 ¢ O - - s 70
kAz (k+1)Az
n+1 n+1
Pk 2
=+ DA e o .
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Deposition of J

Direct current deposition and continuity equation

Direct current deposition does not satisty the continuity equation.)

Reminder:
Updating E with the discretized Maxwell-Ampere equation preserves
v.E="
€0

provided that the continuity equation is satisfied at each iteration.

The PIC loop with direct current deposition does not preserve

v.E- L

€0

Two alternative solutions:
@ DBoris correction: correcting V - E at each iteration.

@ Use a charge-conserving deposition instead of direct deposition.
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Deposition of J

Boris correction

Boris correction

At each iteration, after updating F, correct it using

E'=E-Vép with V%p=V.-E-7L
€0

The new field E’ does satisfy (demonstration on the white board)

v.E="

€0

Practical implementation

The discretized version of

V35p=V -E—- L
€0
needs to be solved on the grid at each iteration, so as to obtain d¢.

— Can be done using techniques from electrostatic PIC (see previous
lecture), e.g. direct matrix, spectral or relaxation methods 31




Deposition of J

Charge-conserving deposition

Charge-conserving deposition

The current 7 is deposited in such a way that it automatically
satisfies the continuity equation

n+1 1
atp|z',j,l§ +a$]33‘zgk +8y]y ,jk —I_az Z| k =0

Several algorithms exist, e.g.
@ Esirkepov (Esirkepov, 2001)
@ ZigZag (Umeda et al., 2003)

In these cases, the PIC loop automatically preserves

v.E=- L
€0

The Boris correction is not needed.
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Deposition of J

Summary
( Update x; and p, |
da:i - v,
a
Pi _ (B +vi xB)
\_ dt B q ' )
f Calculate p, 3 )
Interpolate E, B on the x; from the x;, v;
(average B in time) (either direct or
\ charge-conservings)
( Update E, B using 3 )
0B
— = —VXUE
ot
FE
86—75 — *V xB-— ,uoc2j-
then apply Boris correction
using p (if needed) )
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