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EM-PIC vs. ES-PIC Field solvers Deposition of J References

When to use ES-PIC or EM-PIC

Electrostatics

@B

@t

⇡ 0

r ·E =
⇢

✏0

✓
! r2

� = � ⇢

✏0

◆

Approximate set of equations:

Magnetic fields vary slowly.

Magnetic fields are typically
externally generated. The
magnetic fields generated by
beams/plasma are neglected.

Fast evolutions such as
radiation/retardation e↵ects
are neglected.

Electromagnetics

r ·E =
⇢

✏0
r⇥E = �@B

@t

r·B = 0 r⇥B = µ0j+
1

c

2

@E

@t

Full set of equations:

Self-consistently includes
magnetic fields generated by
the beams/plasmas.

Supports fast evolution of
fields and esp.
retardation/radiation e↵ects
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When to use ES-PIC or EM-PIC

Intuitive examples (animations)

The particles are slow compared
to c.

The fields change adiabatically
and depend only on the
instantaneous positions of the
particles.

! Electrostatic PIC is OK

The particles move close to c, and
accelerate abruptly.

The fields depend on the history
of the particles (radiation e↵ects)

! Electromagnetic PIC is needed
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When to use ES-PIC or EM-PIC

Example using electrostatic PIC:

Sub-GeV acceleration of ions in
conventional accelerators

The ions are slower than c.

Example using electromagnetic PIC:

Laser-driven acceleration of
electrons in plasmas

Presence of radiation (the
laser)

The electrons move close to c.
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When to use ES-PIC or EM-PIC

Other examples using electromagnetic PIC

Electromagnetic plasma instabilities

e.g. collisionless astrophysical shocks

Capturing the self-consistent

evolution of the B field is key.

Interaction of intense lasers
with plasmas

e.g. inertial fusion

Presence of radiation
(lasers)
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Field solver in ES-PIC and EM-PIC

Electrostatic field solver

r2
� = � ⇢

✏0
E = �r�

The fields are recalculated from

scratch at each timestep, from the
current particle charge density.
(no dependence on the history)

Electromagnetic field solver

@B

@t

= �r⇥E

@E

@t

= c

2r⇥B � µ0c
2
j

The fields are updated at each
timestep.

7



EM-PIC vs. ES-PIC Field solvers Deposition of J References

The PIC loop in Electrostatic-PIC

Particle push

Update x

i

and p

i

dx

i

dt

= v

i

dp

i

dt

= q (E + v

i

⇥B)

Field solver

Calculate E from ⇢

r2
� = � ⇢

✏0
E = �r�

Charge deposition

Calculate ⇢ from the x

i

Field gathering

Interpolate E on the x

i
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The PIC loop in Electromagnetic-PIC

Particle push

Update x

i

and p

i

dx

i

dt

= v

i

dp

i

dt

= q (E + v

i

⇥B)

Field solver

Update E,B using j

@B

@t

= �r⇥E

@E

@t

= c

2r⇥B � µ0c
2
j

Charge/current

deposition

Calculate ⇢, j

from the x

i

,v

i

Field gathering

Interpolate E,B on the x

i
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Staggering in time

Reminder: (Monday’s Overview of Basic Numerical Methods)

Centered discretization of derivatives is more accurate

Non-centered discretization

@f

@t

����
n

=
fn+1 � fn

�t

+O(�t)

t

n�t

fn

(n + 1)�t

fn+1

@f
@t

���
n

Centered discretization

@f

@t

����
n

=
fn+1/2 � fn�1/2

�t

+O(�t

2)

t

fn�1/2 fn+1/2

n�t

(n + 1)�t

@f
@t

���
n
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Staggering in time

t

Grid

Particles

n�t

(n+ 1)�t

p

n�1/2
i

E

n

x

n

i

p

n+1/2
i

E

n+1

x

n+1
i

dp

i

dt

���
n

⌘ p

n+1/2
i

�p

n�1/2
i

�t

= q (E(xn

i

) + v

i

⇥B(xn

i

))
dx

i

dt

��n+1/2 ⌘ x

n+1
i

�x

n

i

�t

=
p

n+1/2
i

m�

n+1/2
i

How to discretize @E

@t

= c

2r⇥B � µ0c
2
j in time?

How to stagger E, B and j?
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Staggering in time

t

Grid

Particles

n�t

(n+ 1)�t

p

n�1/2
i

B

n�1/2
E

n

x

n

i

j

n+1/2

B

n+1/2

p

n+1/2
i

E

n+1

x

n+1
i

B

n+3/2

@E

@t

��n+1/2
= c

2r⇥B

n+1/2 � µ0c
2
j

n+1/2
@B

@t

��n+1
= �r⇥E

n+1

E is defined at integer timestep.

B and j are defined at half-integer timestep.
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Staggering in time

Implication for field gathering

The particle pusher requires B at time n�t.
This is obtained by averaging B

n+1/2 and B

n�1/2.

t

Grid

Particles

n�t

(n+ 1)�t

p

n�1/2
i

B

n�1/2
E

n

x

n

i

B

n

j

n+1/2

B

n+1/2

p

n+1/2
i

E

n+1

x

n+1
i

B

n+3/2

dp

i

dt

���
n

= q (En(xn

i

) + v ⇥B

n(xn

i

))
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Staggering in time

Implication for current deposition

The current should be deposited at time (n+ 1/2)�t. This is done by

using the particle’s vn+1/2
i

and some combination of xn

i

and x

n+1
i

.
(See Section 3)

t

Grid

Particles

n�t

(n+ 1)�t

p

n�1/2
i

B

n�1/2
E

n

x

n

i

B

n

j

n+1/2

B

n+1/2

p

n+1/2
i

E

n+1

x

n+1
i

B

n+3/2
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Staggering in time: the full EM-PIC cycle

Particle push

Update x

i

and p

i

dx

i

dt

= v

i

dp

i

dt

= q (E + v

i

⇥B)

Field solver

Update E,B using j

@B

@t

= �r⇥E

@E

@t

= c

2r⇥B � µ0c
2
j

Charge/current

deposition

Calculate ⇢, j

from the x

i

,v

i

Field gathering

Interpolate E,B on the x

i
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Staggering in time: the full EM-PIC cycle

1) Field gathering

t

Grid

Particles

B

n�1/2

p

n�1/2
i

E

n

x

n

i

¯

E

n

(x

n

i

),

¯

B

n

(x

n

i

)

B

n+1/2

p

n+1/2
i

E

n+1

x

n+1
i

B

n+3/2

p

n+3/2
i

2) Particle pusher

t

Grid

Particles

B

n�1/2

p

n�1/2
i

E

n

¯

E

n

(x

n

i

),

¯

B

n

(x

n

i

)

x

n

i

B

n+1/2

p

n+1/2
i

E

n+1

x

n+1
i

B

n+3/2

p

n+3/2
i

3) Current deposition

t

Grid

Particles

B

n�1/2

p

n�1/2
i

⇢

n

E

n

x

n

i

j

n+1/2

B

n+1/2

p

n+1/2
i

⇢

n+1

E

n+1

x

n+1
i

B

n+3/2

p

n+3/2
i

4) Field solver

t

Grid

Particles

B

n�1/2

p

n�1/2
i

E

n

x

n

i

j

n+1/2

B

n+1/2

p

n+1/2
i

E

n+1

x

n+1
i

B

n+3/2

p

n+3/2
i
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Staggering in space (1D)

To illustrate staggering in space, let us consider a simplified case

where the fields vary only along z (1D case).

1D Maxwell equations for E
x

and B

y

8
<

:

@B

@t

= �r⇥E

@E

@t

= c

2r⇥B � µ0c
2
j

!
8
<

:

@B

y

@t

= �@E

x

@z

@E

x

@t

= �c

2 @B

y

@z

� µ0c
2
j

x

(demonstration on the white board)

z

Grid

k�z

(k + 1)�z

E

x

k

E

x

k+1

How to discretize these equations?

How to stagger E
x

, B
y

, j
x

?
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Staggering in space (1D)

1D discretized Maxwell equations for E
x

and B

y

@

t

B

y

|n
k+ 1

2
= �@

z

E

x

|n
k+ 1

2

i.e.

B

y

n+ 1
2

k+ 1
2
�B

y

n� 1
2

k+ 1
2

�t

= �
✓
E

x

n

k+1 � E

x

n

k

�z

◆

@

t

E

x

|n+ 1
2

k

= �c

2
@

z

B

y

|n+ 1
2

k

� µ0c
2
j

x

n+ 1
2

k

i.e.

E

x

n+1
k

� E

x

n

k

�t

= �c

2

0

@
B

y

n+ 1
2

k+ 1
2
�B

y

n+ 1
2

k� 1
2

�z

1

A� µ0c
2
j

x

n+ 1
2

k

z

Grid

k�z

(k + 1)�z

B

y

k� 1
2

j

x

k

E

x

k

B

y

k+ 1
2

j

x

k

E

x

k+1
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Staggering in space (3D): the Yee grid

k�z (k + 1)�z

i�x

(i+ 1)�x

j�y

(j + 1)�y

z

x

y

E

z

, J

z

E

x

, J

x

E

y

, J

y

B

z

B

x

B

y

⇢

The di↵erent components of the di↵erent fields are staggered, so that
all derivatives in the Maxwell equations are centered (Yee, 1966).
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Staggering in space (3D): the Yee grid

Field Position in space and time Notation
x y z t

E

x

(i+ 1

2

)�x j�y k�z n�t E

x

n

i+

1
2 ,j,k

E

y

i�x (j + 1

2

)�y k�z n�t E

y

n

i,j+

1
2 ,k

E

z

i�x j�y (k + 1

2

)�z n�t E

z

n

i,j,k+

1
2

B

x

i�x (j + 1

2

)�y (k + 1

2

)�z (n+ 1

2

)�t B

x

n+

1
2

i,j+

1
2 ,k+

1
2

B

y

(i+ 1

2

)�x j�y (k + 1

2

)�z (n+ 1

2

)�t B

y

n+

1
2

i+

1
2 ,j,k+

1
2

B

z

(i+ 1

2

)�x (j + 1

2

)�y k�z (n+ 1

2

)�t B

z

n+

1
2

i+

1
2 ,j+

1
2 ,k

⇢ i�x j�y k�z n�t ⇢

n

i,j,k

j

x

(i+ 1

2

)�x j�y k�z (n+ 1

2

)�t j

x

n+

1
2

i+

1
2 ,j,k

j

y

i�x (j + 1

2

)�y k�z (n+ 1

2

)�t j

y

n+

1
2

i,j+

1
2 ,k

j

z

i�x j�y (k + 1

2

)�z (n+ 1

2

)�t j

z

n+

1
2

i,j,k+

1
2
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Staggering in space (3D): the Maxwell equations
Maxwell-Ampère

@

t

E

x

|n+

1
2

i+

1
2 ,j,k

= c

2

@

y

B

z

|n+

1
2

i+

1
2 ,j,k

� c

2

@

z

B

y

|n+

1
2

i+

1
2 ,j,k

� µ

0

c

2

j

x

n+

1
2

i+

1
2 ,j,k

@

t

E

y

|n+

1
2

i,j+

1
2 ,k

= c

2

@

z

B

x

|n+

1
2

i,j+

1
2 ,k

� c

2

@

x

B

z

|n+

1
2

i,j+

1
2 ,k

� µ

0

c

2

j

y

n+

1
2

i,j+

1
2 ,k

@

t

E

z

|n+

1
2

i,j,k+

1
2
= c

2

@

x

B

y

|n+

1
2

i,j,k+

1
2
� c

2

@

y

B

x

|n+

1
2

i,j,k+

1
2
� µ

0

c

2

j

z

n+

1
2

i,j,k+

1
2

Maxwell-Faraday

@

t

B

x

|n
i,j+

1
2 ,k+

1
2
= �@

y

E

z

|n
i,j+

1
2 ,k+

1
2
+ @

z

E

y

|n
i,j+

1
2 ,k+

1
2

@

t

B

y

|n
i+

1
2 ,j,k+

1
2
= �@

z

E

x

|n
i+

1
2 ,j,k+

1
2
+ @

x

E

z

|n
i+

1
2 ,j,k+

1
2

@

t

B

z

|n
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1
2 ,j+

1
2 ,k

= �@

x

E

y

|n
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1
2 ,j+

1
2 ,k

+ @

y

E

x

|n
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1
2 ,j+

1
2 ,k

@

t

F |n
0

i

0
,j

0
,k

0 ⌘
F

n

0
+

1
2

i

0
,j

0
,k

0 � F

n

0� 1
2

i

0
,j

0
,k

0

�t

@

x

F |n
0

i

0
,j

0
,k

0 ⌘
F

n

0

i

0
+

1
2 ,j

0
,k

0 � F

n

0

i

0� 1
2 ,j

0
,k

0

�x

@

y

F |n
0

i

0
,j

0
,k

0 ⌘
F

n

0

i

0
,j

0
+

1
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0 � F

n

0

i

0
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2 ,k

0

�y
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F |n
0
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0
,j

0
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0 ⌘
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0
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0
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0
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1
2
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0
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The equations r ·B = 0 and r ·E = ⇢/✏0

Gauss law for magnetic field

r ·B = 0

@

x

B

x

|n+ 1
2

i+ 1
2 ,j+

1
2 ,k+

1
2
+ @

y

B

y

|n+ 1
2

i+ 1
2 ,j+

1
2 ,k+

1
2
+ @

z

B

z

|n+ 1
2

i+ 1
2 ,j+

1
2 ,k+

1
2
= 0

Gauss law

r ·E =
⇢

✏0

@

x

E

x

|n
i,j,k

+ @

y

E

y

|n
i,j,k

+ @

z

E

z

|n
i,j,k

=
⇢

n

i,j,k

✏0

These equations are not used during the PIC loop!

(Since we use only @

t

E = c

2r⇥B � µ0c
2
j and @

t

B = r⇥E to
update the fields.)
! Are r ·B = 0 and r ·E = ⇢/✏0 actually satisfied?
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The equation r ·B = 0

Provided that:

r ·B = 0 is satisfied initially

@B

@t

= �r⇥E is satisfied at all time.

then :
@(r ·B)

@t

= r · @B
@t

= r · (�r⇥E) = 0

i.e. r ·B = 0 at all time

This remains true for the discretized operators.

Conservation of r ·B
Updating B with the discretized Maxwell-Faraday equation preserves

@

x

B

x

|n+ 1
2

i+ 1
2 ,j+

1
2 ,k+

1
2
+ @

y

B

y

|n+ 1
2

i+ 1
2 ,j+

1
2 ,k+

1
2
+ @

z

B

z

|n+ 1
2

i+ 1
2 ,j+

1
2 ,k+

1
2
= 0
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The equation r ·E = ⇢/✏0

Provided that:

r ·E = ⇢/✏0 is satisfied initially
@E

@t

= �c

2r⇥B � µ0c
2
j is satisfied at all time.

then :
@

@t

✓
r ·E � ⇢

✏0

◆
= � 1

✏0

✓
@⇢

@t

+r · j
◆

i.e. r ·E =
⇢

✏0
at all time, provided that

@⇢

@t

+r · j = 0

Conservation of r ·E = ⇢/✏0

Updating E with the discretized Maxwell-Ampère equation preserves

@

x

E

x

|n
i,j,k

+ @

y

E

y

|n
i,j,k

+ @

z

E

z

|n
i,j,k

=
⇢

n

i,j,k

✏0

provided that the continuity equation is satisfied at each iteration:

@

t

⇢|n+ 1
2

i,j,k

+ @

x

j

x

|n+ 1
2

i,j,k

+ @

y

j

y

|n+ 1
2

i,j,k

+ @

z

j

z

|n+ 1
2

i,j,k

= 0
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Charge/current deposition: reminder

1) Field gathering
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2) Particle pusher

t

Grid

Particles

B

n�1/2

p

n�1/2
i

E

n

¯

E

n

(x

n

i

),

¯

B

n

(x

n

i

)

x

n

i

B

n+1/2

p

n+1/2
i

E

n+1

x

n+1
i

B

n+3/2

p

n+3/2
i

3) Current deposition
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4) Field solver
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Direct current deposition: 1D example

Direct current deposition: The current j is deposited with the same
shape factor as the charge density ⇢.
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Direct current deposition and continuity equation

1D continuity equation
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Does direct deposition satisfy the continuity equation?

Example with nearest grid point, i.e. S(z � z
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Direct current deposition and continuity equation

Direct current deposition does not satisfy the continuity equation.

Reminder:

Updating E with the discretized Maxwell-Ampère equation preserves

r ·E =
⇢

✏0

provided that the continuity equation is satisfied at each iteration.

The PIC loop with direct current deposition does not preserve

r ·E =
⇢

✏0

Two alternative solutions:

Boris correction: correcting r ·E at each iteration.

Use a charge-conserving deposition instead of direct deposition.
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Boris correction

Boris correction

At each iteration, after updating E, correct it using

E

0 = E �r�� with r2
�� = r ·E � ⇢

✏0

The new field E

0 does satisfy (demonstration on the white board)

r ·E0 =
⇢

✏0

Practical implementation

The discretized version of

r2
�� = r ·E � ⇢

✏0

needs to be solved on the grid at each iteration, so as to obtain ��.
! Can be done using techniques from electrostatic PIC (see previous
lecture), e.g. direct matrix, spectral or relaxation methods
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Charge-conserving deposition

Charge-conserving deposition

The current j is deposited in such a way that it automatically
satisfies the continuity equation

@

t

⇢|n+ 1
2

i,j,k

+ @

x

j

x

|n+ 1
2

i,j,k

+ @

y

j

y

|n+ 1
2

i,j,k

+ @

z

j

z

|n+ 1
2

i,j,k

= 0

Several algorithms exist, e.g.

Esirkepov (Esirkepov, 2001)

ZigZag (Umeda et al., 2003)

In these cases, the PIC loop automatically preserves

r ·E =
⇢

✏0

The Boris correction is not needed.
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Summary

Update x

i

and p

i

dx

i

dt

= v

i

dp

i

dt

= q (E + v

i

⇥B)

Update E,B using j
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@E

@t

= c

2r⇥B � µ

0

c

2

j

then apply Boris correction
using ⇢ (if needed)

Calculate ⇢, j

from the x

i

,v

i

(either direct or
charge-conservings)

Interpolate E,B on the x

i

(average B in time)
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