
1/24/2018

1

USPAS – Simulation of Beam and Plasma Systems

Steven M. Lund, Jean-Luc Vay, Remi Lehe, Daniel Winklehner and David L. Bruhwiler

U.S. Particle Accelerator School sponsored by Old Dominion University

http://uspas.fnal.gov/programs/2018/odu/courses/beam-plasma-systems.shtml

January 15-26, 2018 – Hampton, Virginia

Instructor: David L. Bruhwiler

Contributors: R. Nagler

This material is based upon work supported by the U.S. Department of Energy,

Office of Science, Offices of High Energy Physics and Basic Energy Sciences,

under Award Number(s) DE-SC0011237 and DE-SC0011340.

Lecture: Software Testing

2D. Bruhwiler – USPAS – January 2018 – Software Testing

Motivation

• Untested software is broken software

– look for the tests that are being used to maintain software you’re using

• Are there any tests for the software you are using?

– sometimes there are no tests (or very few)

– maybe there is a suite of examples

• this can be very helpful

• especially if the expected results are included

• Do computational physicists worry about this?

– we rely (in part) on the reputation of the developers

• national lab or university team

• for commercial codes, a company

– also, we can simulate cases to compare with theory

– we benchmark with other codes, when possible

– we trust our own physical intuition to identify problematic results

– if we see many other users & published results, we feel OK

• This is not a great situation for computational accelerator physics

– look for tests, ask the developers for tests, complain

http://uspas.fnal.gov/programs/2018/odu/courses/beam-plasma-systems.shtml

1/24/2018

2

3D. Bruhwiler – USPAS – January 2018 – Software Testing

Validity – this is essential to the issue of reproducibility

• Computational science requires validated software

– we want our results to be correct

– need confidence that other published/presented results are correct

• Build environment and computing platform:

– software is validated on a particular platform, compiler, etc.

• supporting multiple platforms is possible, but expensive

– what if the software is built, installed, executed on another platform?

• can one be sure that it is still valid?

• Versioning:

– a particular version of software is validated

• regular use of regression tests can help maintain validity across versions

• however: tests are never complete, features are added/removed, etc.

– for multiple dependencies, versioning becomes an N2 problem

– how can one be sure of the validity of a particular software version?

• how can one communicate full versioning information to others?

• Sharing:

– difficult to share identical build & version(s), including dependencies

4D. Bruhwiler – USPAS – January 2018 – Software Testing

Automated software testing

• When you are writing software, you should create tests

– you should also create tests for simulations that you are doing

• You should also run the tests regularly

• Automated testing frameworks make this possible

– not easy necessarily, but the effort always pays off

– there are many frameworks, but we will not review them here

• look around and find one that you like

• For Python, pytest is a good, https://docs.pytest.org

https://docs.pytest.org/

1/24/2018

3

5D. Bruhwiler – USPAS – January 2018 – Software Testing

Getting started with pytest

https://docs.pytest.org/en/latest/getting-started.html#our-first-test-run

6D. Bruhwiler – USPAS – January 2018 – Software Testing

pytest – naming conventions & test discovery

• by default pytest looks in all files & dirs below the current directory

• You can specify one or more paths to override the default:

$ pytest src/modules/example/test/

• File names should start or end with “test”

– for example: test_example.py or example_test.py

• for tests defined inside a class, the class name should start with “Test”

– for example: TestExample

– the Python class should not have an __init__ method

• Test method names or function names must start with “test_”

– as in test_example

• Learn what tests will be discovered:

$ pytest --collect-only

https://docs.pytest.org/en/latest/getting-started.html#our-first-test-run

1/24/2018

4

7D. Bruhwiler – USPAS – January 2018 – Software Testing

RsBeams – a simple python library for beams

• You previously forked this repo to your own GitHub account

– for the computer lab this afternoon, you will clone this forked repo

• or you can clone the original repo, if you prefer

$ git clone https://github.com/radiasoft/rsbeams.git

• or maybe you still have it on your class desktop or your own laptop

• heads up regarding the computer lab

– RsBeams is compatible with Python 3.5 and 2.7

• you may have to do the following:

$ pip install pykern

$ cd rsbeams/

$ python setup.py install

$ cd test/

$ pytest

• decide what part of the code you would like to test

– we will now spend some time reviewing the RsBeams source code

https://github.com/radiasoft/rsbeams

