USPAS — Simulation of Beam and Plasma Systems
Steven M. Lund, Jean-Luc Vay, Remi Lehe, Daniel Winklehner and David L. Bruhwiler

Lecture: Software Testing
Instructor: David L. Bruhwiler

/A radiasoft

Contributors: R. Nagler

U.S. Particle Accelerator School sponsored by Old Dominion University
http://uspas.fnal.gov/programs/2018/odu/courses/beam-plasma-systems.shtml

January 15-26, 2018 - Hampton, Virginia

U.S. DEPARTMENT OF
This material is based upon work supported by the U.S. Department of Energy, e
Office of Science, Offices of High Energy Physics and Basic Energy Sciences, EN ERGY
under Award Number(s) DE-SC0011237 and DE-SC0011340. .
Office of Science

1/24/2018

Motivation

« Untested software is broken software

look for the tests that are being used to maintain software you're using

* Are there any tests for the software you are using?

sometimes there are no tests (or very few)
maybe there is a suite of examples

« this can be very helpful

« especially if the expected results are included

» Do computational physicists worry about thise

we rely (in part) on the reputation of the developers
» national lab or university team
» for commercial codes, a company
also, we can simulate cases to compare with theory
we benchmark with other codes, when possible
we frust our own physical intuition to identify problematic results
if we see many other users & published results, we feel OK

» Thisis not a great situation for computational accelerator physics

look for tests, ask the developers for tests, complain

T
A I}l" D. Bruhwiler — USPAS — January 2018 — Software Testing #2

http://uspas.fnal.gov/programs/2018/odu/courses/beam-plasma-systems.shtml

1/24/2018

Validity - thisis essential to the issue of reproducibility Automated software testing

* When you are writing software, you should create tests

— you should also create tests for simulations that you are doing
* You should also run the tests regularly
« Automated testing frameworks make this possible

— not easy necessarily, but the effort always pays off

— there are many frameworks, but we will not review them here
look around and find one that you like

» Computational science requires validated software
— we want our results to be correct
— need confidence that other published/presented results are correct
» Build environment and computing platform:
— software is validated on a particular platform, compiler, etc.
« supporting multiple platforms is possible, but expensive
— what if the software is built, installed, executed on another platform?
+ can one be sure that it is still valid?
+ Versioning:
— a particular version of software is validated I
+ regular use of regression tests can help maintain validity across versions IT
* however: tests are never complete, features are added/removed, etc.
— for multiple dependencies, versioning becomes an N2 problem

* ForPython, pytest isagood, https://docs.pytest.org

pytest: helps you write better programs

The pytest framework makes it easy to write small tests, yet scales to support complex functional
testing for applications and libraries

— how can one be sure of the validity of a particular software version2 pytESt An example of simple test
» how can one communicate full versioning information to others? # content of test_sample.py
def .

+ Sharing: About pytest o1

— difficult to share identical build & version(s), including dependencies Pion ostng o o e A test_ansuer():

you write better programs. o e ==
Tm _ _ m _ :

A L) D. Bruhwiler — USPAS - January 2018 — Software Testing #3 A d D. Bruhwiler — USPAS - January 2018 — Software Testing #4

https://docs.pytest.org/

Getting started with pytest

https://docs.pytest.org/en/latest/getting-started.htmlfour-first-test-run

Create a simple test function with just four lines of code

content of test_sample.py
def func(x):
return x + 1

def test_answer():
assert func(3) == 5

That's it. You can now execute the test function

$ pytest
= == test session starts ==
platform linux -- Python 3.x.y, pytest-3.x.y, py-1.x.y, pluggy-0.x.y
rootdir: $REGENDOC_TMPDIR, inifile:

collected 1 item

test_sample.py F [100%]

FAILURES
test_ansvier

def test_answer()

> assert func(3) == 5
E assert 4 == 5
E + where 4 = func(3)

tionError
== 1 failed in 0.12 seconds ===

This test returns a failure report because func(2) does not return 5

90
A I\!‘H’h D. Bruhwiler — USPAS - January 2018 — Software Testing #5

pytest - naming conventions & test discovery

by default pytest looks in all files & dirs below the current directory
You can specify one or more paths to override the default:
$ pytest src/modules/example/test/

File names should start or end with "“test”

— forexample: test example.py Or example test.py
for tests defined inside a class, the class name should start with “Test”

— forexample: TestExample

— the Python class should not have an ~ init method
Test method names or function names must start with “test_"

— asin test example
Learn what tests will be discovered:

$ pytest --collect-only

90
A I\!‘H’h D. Bruhwiler — USPAS — January 2018 — Software Testing

#6

1/24/2018

https://docs.pytest.org/en/latest/getting-started.html#our-first-test-run

1/24/2018

RsBeams - a simple python library for beams

* You previously forked this repo to your own GitHub account
— for the computer lab this afternoon, you will clone this forked repo
» oryou can clone the original repo, if you prefer
$ git clone https://github.com/radiasoft/rsbeams.git
» or maybe you still have it on your class desktop or your own laptop
» heads up regarding the computer lab
— RsBeams is compatible with Python 3.5 and 2.7
» you may have to do the following:
$ pip install pykern
$ cd rsbeams/
$ python setup.py install
$ cd test/
$ pytest

» decide what part of the code you would like to test
— we willnow spend some fime reviewing the RsBeams source code
https://github.com/radiasoft/rsbeams

T
A !h"[h D. Bruhwiler — USPAS - January 2018 — Software Testing #7

