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Goals

• Graphical User Interfaces (GUI)

– understand some principles of user interface (UI) design

– appreciate the difficulties associated with desktop GUIs

– consider some aspects of “software sustainability”

• Understand what’s meant by “cloud computing”

– Why this is helpful for “computational reproducibility”

– Other benefits it can provide, like easy collaboration

• Learn a little about the elegant code from ANL

– M. Borland, “elegant: A Flexible SDDS-Compliant Code for Accelerator Simulation,” 

Advanced Photon Source LS-287 (2000).

– Y. Wang and M. Borland, “Pelegant: A Parallel Accelerator Simulation Code for Electron 

Generation and Tracking,” AIP Conf. Proc. 877, 241 (2006).

– https://ops.aps.anl.gov/manuals/elegant_latest/elegant.html

• Become familiar with Sirepo/elegant

– a browser-based GUI

https://ops.aps.anl.gov/manuals/elegant_latest/elegant.html
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Separate  Physics from  UI from  Control logic

• Commonly referred to as model-view-controller (MVC)
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MVC has become   Model – View – Whatever

• The reality of modern UI’s is complicated

– JavaScript library AngularJS is advances the MV* concept
https://angularjs.org

https://angularjs.org/
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Why do we end up with Cross-platform GUIs?

• GUI used to imply “desktop application”

– still does in for some people

– Windows-only   vs Linux-only   vs Linux & MacOS   vs Mac-only

– there is immediate frustration from users

• strong pressure to support multiple platforms

• The Qt application and UI framework is a popular solution

– cross-platform C/C++ GUI toolkit, http://www.qt.io

– Python bindings, http://riverbankcomputing.com/software/pyqt

– there are a number of competing open source options

• It’s expensive to develop & maintain a cross-platform application

– Qt / Python help a lot, but do not solve the problem

– see slide #8 of the “computational reproducibility” lecture

• Python 2.7.x code is not always compatible with Python 3.x code

• 32 bit and 64 bit versions of Python are incompatible

• open source library projects issue frequent releases 

• underlying physics application may not be robustly cross-platform

http://www.qt.io/
http://riverbankcomputing.com/software/pyqt
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Why so few GUIs for particle accelerator codes?

• There are definitely some, but…

– how many particle accelerator codes are there?        Many

– how many users are there for each code?     Not so many

– how many OS’s are used by each subset?     Probably  3

• Too expensive to support M GUIs on 3 platforms

– only of order  Ntotal / (3 * M) users for each instance

– even if you get someone else to pay the cost, is it worth it?

– question of software sustainability

• Also, code development teams are busy and under-funded

– they will not modify their code to support GUI development efforts

– any code/GUI coupling must be very loose

– all burden is on the GUI developer to support file formats, etc.

• An approach was proposed and developed by RadiaBeam Tech

– a Python/Qt cross-platform GUI for multiple physics codes

• very loose coupling between GUI and code

• GUI enables easy interchange between different codes

– the project is called RadTrack  

D.L. Bruhwiler, R. Nagler, S.D. Webb, G. Andonian, M.A. Harrison, S. Seung, T. Shaftan and P. Moeller, “Cross-platform and cloud-

based access to multiple particle accelerator codes via application containers,” Proc. Int. Part. Accel. Conf., MOPMN009 (2015).
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RadTrack – a cross-platform GUI for accelerator codes

• Available on GitHub,  https://github.com/radiasoft/radtrack

– good place to start if you’re interested in PyQt, with lots of good code

– but it’s no longer supported – a question of software sustainability

• development was supported by US DOE/BES, Award # DE-SC0006284

A Synchrotron Radiation Workshop (SRW) simulation 

showing the interference of synchrotron radiation from 

two nearby dipoles – an important e- beam diagnostic.

RadTrack simulation, showing 2D phase space projections 

plots: horizontal x-x’ phase space (upper left); vertical y-y’ 

phase space (upper right); x-y configuration space (lower 

left); and s-dp longitudinal phase space (lower right).

https://github.com/radiasoft/radtrack
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Class discussion:

• Any questions at this point?

• Have you used an accelerator physics code with a GUI?

– If yes, how was the GUI helpful (or not)?

– If no, have you ever wished there was a GUI for codes you use?

• Have you ever used a GUI-based code and been frustrated?

– do you consider it a point of honor to work from the command line?

• What is meant by “software sustainability”?
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What does it mean to execute a code “in the cloud”

• Cloud computing is a buzzword, and will probably fade in time

– used to be called “client-server”

– then it was called “software as a service” or SaaS

– for a short while, everyone talked about “grid computing”

• The physics code is running on a remote “server”

– probably running on Linux, possibly on a cluster or supercomputer

– might be on “bare metal”, such as your institution’s cluster down the hall

– might be running on a commercial cloud provider, like AWS

• The UI is your computer browser

– whether you are banking, shopping, or designing a linac

• This wasn’t practical 5+ years ago, so what changed?

– the HTML5  standard was adopted by all modern browsers

• the same GUI can now function well in any modern browser on any OS

– the JavaScript language (nothing like Java) emerged as a standard

• many powerful JavaScript libraries and frameworks became available

– browsers have become powerful precompilers for executing code
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The Sirepo cloud computing framework

• Open source, https://github.com/radiasoft/sirepo

• Freely available in open beta, https://sirepo.com

• Growing number of codes

– X-ray optics:  SRW, Shadow

– Particle accelerators: elegant, Warp (special cases), more on the way

• Growing number of users

– independent servers at BNL/NSLS-II,   LBNL/ALS and   PSI/ETH Zurich

– about 100 users visit the open beta site

https://github.com/radiasoft/sirepo
https://sirepo.com/
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Sirepo:  in-browser technologies

• HTML5 (including JavaScript, CSS3, SVG, etc.)
– https://en.wikipedia.org/wiki/HTML5

• Bootstrap,     http://getbootstrap.com

– fundamental for cross-platform web applications

• AngularJS,    https://angularjs.org
– model–view–whatever (MV *) architecture, components

• D3.js,             http://d3js.org
– interactive plots, data-driven transformations

• Karma, http://karma-runner.github.io
– testing framework for browser-based applications

• JSON,             https://www.w3schools.com/js/js_json.asp

– JavaScript Object Notation – lightweight data-interchange format

http://getbootstrap.com/
https://angularjs.org/
http://d3js.org/
http://karma-runner.github.io/
https://www.w3schools.com/js/js_json.asp
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Sirepo:  server-side technologies

• Docker         https://www.docker.com

– enables rapid deployment of applications to the cloud

• Flask             http://flask.pocoo.org

– lightweight framework for web development with Python

• Celery          http://docs.celeryproject.org

– task manager

• RabbitMQ    https://www.rabbitmq.com

– message broker

• Jinja             http://jinja.pocoo.org/docs/dev

– secure and widely used templating language for Python

• Werkzeug    http://werkzeug.pocoo.org/docs/0.10

– Python utility library, compliant with the WSGI standard

• Nginx           https://www.nginx.com/resources/wiki

– HTTP server & proxy; scalable event-driven architecture

• Pyenv          https://github.com/yyuu/pyenv

– Python version management, multiple versions

https://www.docker.com/
http://flask.pocoo.org/
http://docs.celeryproject.org/
https://www.rabbitmq.com/
http://jinja.pocoo.org/docs/dev
http://werkzeug.pocoo.org/docs/0.10
https://www.nginx.com/resources/wiki
https://github.com/yyuu/pyenv
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Class discussion:

• Any questions at this point?

• How does cloud computing help with ease of use?

• How does cloud computing help with software sustainability?
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The accelerator design workflow
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Wrap up

• Any final questions regarding the material in this lecture?

• Have you ever used elegant?

– If yes, then what application did you address?

– If no, then do you think it could be useful to your work in the future?

• In the Computer Lab this afternoon, we will…

– go through a demo of using Sirepo/elegant

• Acknowledgments

– I borrowed several slides describing ‘elegant’ from a talk by M. Borland

– M. Borland, “Introduction to Elegant,” August 18, 2006

https://ops.aps.anl.gov/presentations/borland-2006-08-18.pdf

– You can find the ‘elegant’ user manual here,

https://ops.aps.anl.gov/manuals/elegant_latest/elegant.html

https://ops.aps.anl.gov/presentations/borland-2006-08-18.pdf
https://ops.aps.anl.gov/manuals/elegant_latest/elegant.html

