
USPAS – Simulation of Beam and Plasma Systems

Steven M. Lund, Jean-Luc Vay, Remi Lehe, Daniel Winklehner and David L. Bruhwiler

U.S. Particle Accelerator School sponsored by Old Dominion University

http://uspas.fnal.gov/programs/2018/odu/courses/beam-plasma-systems.shtml

January 15-26, 2018 – Hampton, Virginia

Instructor: David L. Bruhwiler

Contributors: P. Moeller, R. Nagler and C. Hall

G. Andonian, UCLA / RadiaBeam Tech

This material is based upon work supported by the U.S. Department of Energy,

Office of Science, Offices of High Energy Physics and Basic Energy Sciences,

under Award Number(s) DE-SC0011237 and DE-SC0011340.

Lecture: Graphical User Interfaces

http://uspas.fnal.gov/programs/2018/odu/courses/beam-plasma-systems.shtml

2D. Bruhwiler – USPAS – January 2018 – Graphical User Interfaces

Goals

• Graphical User Interfaces (GUI)

– understand some principles of user interface (UI) design

– appreciate the difficulties associated with desktop GUIs

– consider some aspects of “software sustainability”

• Understand what’s meant by “cloud computing”

– Why this is helpful for “computational reproducibility”

– Other benefits it can provide, like easy collaboration

• Learn a little about the elegant code from ANL

– M. Borland, “elegant: A Flexible SDDS-Compliant Code for Accelerator Simulation,”

Advanced Photon Source LS-287 (2000).

– Y. Wang and M. Borland, “Pelegant: A Parallel Accelerator Simulation Code for Electron

Generation and Tracking,” AIP Conf. Proc. 877, 241 (2006).

– https://ops.aps.anl.gov/manuals/elegant_latest/elegant.html

• Become familiar with Sirepo/elegant

– a browser-based GUI

https://ops.aps.anl.gov/manuals/elegant_latest/elegant.html

3D. Bruhwiler – USPAS – January 2018 – Graphical User Interfaces

Separate Physics from UI from Control logic

• Commonly referred to as model-view-controller (MVC)

4D. Bruhwiler – USPAS – January 2018 – Graphical User Interfaces

MVC has become Model – View – Whatever

• The reality of modern UI’s is complicated

– JavaScript library AngularJS is advances the MV* concept
https://angularjs.org

https://angularjs.org/

5D. Bruhwiler – USPAS – January 2018 – Graphical User Interfaces

Why do we end up with Cross-platform GUIs?

• GUI used to imply “desktop application”

– still does in for some people

– Windows-only vs Linux-only vs Linux & MacOS vs Mac-only

– there is immediate frustration from users

• strong pressure to support multiple platforms

• The Qt application and UI framework is a popular solution

– cross-platform C/C++ GUI toolkit, http://www.qt.io

– Python bindings, http://riverbankcomputing.com/software/pyqt

– there are a number of competing open source options

• It’s expensive to develop & maintain a cross-platform application

– Qt / Python help a lot, but do not solve the problem

– see slide #8 of the “computational reproducibility” lecture

• Python 2.7.x code is not always compatible with Python 3.x code

• 32 bit and 64 bit versions of Python are incompatible

• open source library projects issue frequent releases

• underlying physics application may not be robustly cross-platform

http://www.qt.io/
http://riverbankcomputing.com/software/pyqt

6D. Bruhwiler – USPAS – January 2018 – Graphical User Interfaces

Why so few GUIs for particle accelerator codes?

• There are definitely some, but…

– how many particle accelerator codes are there? Many

– how many users are there for each code? Not so many

– how many OS’s are used by each subset? Probably 3

• Too expensive to support M GUIs on 3 platforms

– only of order Ntotal / (3 * M) users for each instance

– even if you get someone else to pay the cost, is it worth it?

– question of software sustainability

• Also, code development teams are busy and under-funded

– they will not modify their code to support GUI development efforts

– any code/GUI coupling must be very loose

– all burden is on the GUI developer to support file formats, etc.

• An approach was proposed and developed by RadiaBeam Tech

– a Python/Qt cross-platform GUI for multiple physics codes

• very loose coupling between GUI and code

• GUI enables easy interchange between different codes

– the project is called RadTrack

D.L. Bruhwiler, R. Nagler, S.D. Webb, G. Andonian, M.A. Harrison, S. Seung, T. Shaftan and P. Moeller, “Cross-platform and cloud-

based access to multiple particle accelerator codes via application containers,” Proc. Int. Part. Accel. Conf., MOPMN009 (2015).

7D. Bruhwiler – USPAS – January 2018 – Graphical User Interfaces

RadTrack – a cross-platform GUI for accelerator codes

• Available on GitHub, https://github.com/radiasoft/radtrack

– good place to start if you’re interested in PyQt, with lots of good code

– but it’s no longer supported – a question of software sustainability

• development was supported by US DOE/BES, Award # DE-SC0006284

A Synchrotron Radiation Workshop (SRW) simulation

showing the interference of synchrotron radiation from

two nearby dipoles – an important e- beam diagnostic.

RadTrack simulation, showing 2D phase space projections

plots: horizontal x-x’ phase space (upper left); vertical y-y’

phase space (upper right); x-y configuration space (lower

left); and s-dp longitudinal phase space (lower right).

https://github.com/radiasoft/radtrack

8D. Bruhwiler – USPAS – January 2018 – Graphical User Interfaces

Class discussion:

• Any questions at this point?

• Have you used an accelerator physics code with a GUI?

– If yes, how was the GUI helpful (or not)?

– If no, have you ever wished there was a GUI for codes you use?

• Have you ever used a GUI-based code and been frustrated?

– do you consider it a point of honor to work from the command line?

• What is meant by “software sustainability”?

9D. Bruhwiler – USPAS – January 2018 – Graphical User Interfaces

What does it mean to execute a code “in the cloud”

• Cloud computing is a buzzword, and will probably fade in time

– used to be called “client-server”

– then it was called “software as a service” or SaaS

– for a short while, everyone talked about “grid computing”

• The physics code is running on a remote “server”

– probably running on Linux, possibly on a cluster or supercomputer

– might be on “bare metal”, such as your institution’s cluster down the hall

– might be running on a commercial cloud provider, like AWS

• The UI is your computer browser

– whether you are banking, shopping, or designing a linac

• This wasn’t practical 5+ years ago, so what changed?

– the HTML5 standard was adopted by all modern browsers

• the same GUI can now function well in any modern browser on any OS

– the JavaScript language (nothing like Java) emerged as a standard

• many powerful JavaScript libraries and frameworks became available

– browsers have become powerful precompilers for executing code

10D. Bruhwiler – USPAS – January 2018 – Graphical User Interfaces

The Sirepo cloud computing framework

• Open source, https://github.com/radiasoft/sirepo

• Freely available in open beta, https://sirepo.com

• Growing number of codes

– X-ray optics: SRW, Shadow

– Particle accelerators: elegant, Warp (special cases), more on the way

• Growing number of users

– independent servers at BNL/NSLS-II, LBNL/ALS and PSI/ETH Zurich

– about 100 users visit the open beta site

https://github.com/radiasoft/sirepo
https://sirepo.com/

11D. Bruhwiler – USPAS – January 2018 – Graphical User Interfaces

Sirepo: in-browser technologies

• HTML5 (including JavaScript, CSS3, SVG, etc.)
– https://en.wikipedia.org/wiki/HTML5

• Bootstrap, http://getbootstrap.com

– fundamental for cross-platform web applications

• AngularJS, https://angularjs.org
– model–view–whatever (MV *) architecture, components

• D3.js, http://d3js.org
– interactive plots, data-driven transformations

• Karma, http://karma-runner.github.io
– testing framework for browser-based applications

• JSON, https://www.w3schools.com/js/js_json.asp

– JavaScript Object Notation – lightweight data-interchange format

http://getbootstrap.com/
https://angularjs.org/
http://d3js.org/
http://karma-runner.github.io/
https://www.w3schools.com/js/js_json.asp

12D. Bruhwiler – USPAS – January 2018 – Graphical User Interfaces

Sirepo: server-side technologies

• Docker https://www.docker.com

– enables rapid deployment of applications to the cloud

• Flask http://flask.pocoo.org

– lightweight framework for web development with Python

• Celery http://docs.celeryproject.org

– task manager

• RabbitMQ https://www.rabbitmq.com

– message broker

• Jinja http://jinja.pocoo.org/docs/dev

– secure and widely used templating language for Python

• Werkzeug http://werkzeug.pocoo.org/docs/0.10

– Python utility library, compliant with the WSGI standard

• Nginx https://www.nginx.com/resources/wiki

– HTTP server & proxy; scalable event-driven architecture

• Pyenv https://github.com/yyuu/pyenv

– Python version management, multiple versions

https://www.docker.com/
http://flask.pocoo.org/
http://docs.celeryproject.org/
https://www.rabbitmq.com/
http://jinja.pocoo.org/docs/dev
http://werkzeug.pocoo.org/docs/0.10
https://www.nginx.com/resources/wiki
https://github.com/yyuu/pyenv

13D. Bruhwiler – USPAS – January 2018 – Graphical User Interfaces

Class discussion:

• Any questions at this point?

• How does cloud computing help with ease of use?

• How does cloud computing help with software sustainability?

14D. Bruhwiler – USPAS – January 2018 – Graphical User Interfaces

15D. Bruhwiler – USPAS – January 2018 – Graphical User Interfaces

16D. Bruhwiler – USPAS – January 2018 – Graphical User Interfaces

17D. Bruhwiler – USPAS – January 2018 – Graphical User Interfaces

18D. Bruhwiler – USPAS – January 2018 – Graphical User Interfaces

19D. Bruhwiler – USPAS – January 2018 – Graphical User Interfaces

20D. Bruhwiler – USPAS – January 2018 – Graphical User Interfaces

21D. Bruhwiler – USPAS – January 2018 – Graphical User Interfaces

22D. Bruhwiler – USPAS – January 2018 – Graphical User Interfaces

23D. Bruhwiler – USPAS – January 2018 – Graphical User Interfaces

24D. Bruhwiler – USPAS – January 2018 – Graphical User Interfaces

25D. Bruhwiler – USPAS – January 2018 – Graphical User Interfaces

26D. Bruhwiler – USPAS – January 2018 – Graphical User Interfaces

27D. Bruhwiler – USPAS – January 2018 – Graphical User Interfaces

28D. Bruhwiler – USPAS – January 2018 – Graphical User Interfaces

29D. Bruhwiler – USPAS – January 2018 – Graphical User Interfaces

30D. Bruhwiler – USPAS – January 2018 – Graphical User Interfaces

31D. Bruhwiler – USPAS – January 2018 – Graphical User Interfaces

32D. Bruhwiler – USPAS – January 2018 – Graphical User Interfaces

The accelerator design workflow

33D. Bruhwiler – USPAS – January 2018 – Graphical User Interfaces

Wrap up

• Any final questions regarding the material in this lecture?

• Have you ever used elegant?

– If yes, then what application did you address?

– If no, then do you think it could be useful to your work in the future?

• In the Computer Lab this afternoon, we will…

– go through a demo of using Sirepo/elegant

• Acknowledgments

– I borrowed several slides describing ‘elegant’ from a talk by M. Borland

– M. Borland, “Introduction to Elegant,” August 18, 2006

https://ops.aps.anl.gov/presentations/borland-2006-08-18.pdf

– You can find the ‘elegant’ user manual here,

https://ops.aps.anl.gov/manuals/elegant_latest/elegant.html

https://ops.aps.anl.gov/presentations/borland-2006-08-18.pdf
https://ops.aps.anl.gov/manuals/elegant_latest/elegant.html

