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Centralized version control systems (VCS)

• A version control system (VCS) records changes to a set of files

• Manual version control (ad hoc, error prone)

– copy file versions with some convention for naming, location, etc.

– ad hoc, error prone, difficult to collaborate

• Centralized software version control

– enables collaboration

– reliable recovery of previous states

– CVS, Subversion (SVN), many others

• Criticisms of centralized systems

– server is a single point of failure

– if server goes down for an hour

• nobody has access

– if database becomes corrupted

• all recent work is lost (since backup)

• except for individual snapshots

– all these criticisms are addressed by a well-managed system
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Distributed vs Central models

• Centralized version control systems

– focuses on synchronizing, tracking, and backing up files

– recording/downloading is simultaneous with applying a change

– primary repo is a database on a central server

• the entire change history, including branches, is part of the central database

• user repositories are snapshots that get synched with the central database

• Distributed version control systems

– focuses on sharing changes;  every change has a unique  guid

– recording/downloading is separate from applying a change

– the hierarchical structure is not required

• one can create a centrally administered location, if it is convenient

• alternatively, one can treat all repositories as equal peers

• this results in new concepts and associated terminology

– push: send a change to another repository

– pull: grab a change from a repository

– the change history, including branches, are distributed

• every user repo is self-contained
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git – Getting Started

• It is assumed you are working on the Linux command line

• Establish your git identity (name & email) for the local client

– every git commit uses this information

– it’s immutably baked into the commits you start creating

$ git config --global user.name "My Name" 

$ git config --global user.email my_name@example.com

– you need do this only once if you pass the --global option

– many GUI tools will help you do this when you first run them

• Configure the default text editor

$ git config --global core.editor emacs 

– used when git needs you to type a message

– if not configured, git uses your system’s default editor
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Class discussion:

• Any questions at this point?

• Any concerns about using git from the command line (CL)?
– git is a distributed VCS implementation

– the classroom computers provide git on Linux

– 2 students per computer, but only one Linux login
• this means you’ll have to share a single git identity

• Work from your laptop…
– if it has a good CL environment, with git installed

– PyCharm supports interaction with git, GitHub and other VCS options

• You can download/install the GitHub desktop application
– https://desktop.github.com

– it installs git on your Windows or MacOS laptop

– it provides an optional command-line terminal for using git

• Today’s computer lab exercises will provide some practical experience

https://desktop.github.com/
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git – Underlying Concepts (Part 1)

• The git CLI is not intuitive, compared to central model applications (e.g. svn)
– it helps if you understand the underlying concepts

• The git commit tree
– information is representable as a graph

• each node results from an operation

• database is immutable and append-only

• an example git Tree (see figure)
– each node is associated with…

• the developer’s commit message
• a unique hash (guid)

• Git references
– a reference (ref) is a human readable label, pointing to a commit hash

• branches, tags, remotes are all forms of refs

• refs facilitate interaction with the commit tree

– refs do not hold the information in the git database
• all such info is held within the commit tree, which is immutable

– suppose the git repository is in a bad state, and we want to back track
• all previous states are still present inside the tree

• we need only change the references to the desired commit address

– git provides a special reference named HEAD
• current address for the state that is checked out in the working directory
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git – Underlying Concepts (Part 2)

• The state of a git repository has three components

– Working Directory

• result of cloning a git repository 

• a directory with everything contained within the git repository

– Staging Index

• an intermediate space to add changes from the working directory

• (without adding them to the commit tree)

– Commit Tree

• changes in the staging index are (when ready) added to the commit tree

• each change is given a hash address

• Cloning a repository

– Create a local copy

• this is complete and independent from the source

– git supports various protocols:

$ git clone [<options>] <repo> [<dir>]

• If no [<dir>], git creates a new directory with the same name as the repo

– local filesystem clone

$ git clone /Path/To/Git/Repo/Dir

– remote HTTPS clone from GitHub

$ git clone https://github.com/radiasoft/devops.git

Docs for ‘git clone’,  https://git-scm.com/docs/git-clone

https://git-scm.com/docs/git-clone
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git – the Checkout command

• It changes the HEAD reference, making it point to a new address

– affects only the working directory

– secondary use:  undo changes in the working directory

$ git checkout [<options>] <branch>

• Useful examples:

– get latest commit from the  master branch for use in currently active branch

$ git checkout master

– get an address (e.g. 2d52a68) and label it as branch  new_branch_name

$ git checkout -b new_branch_name 2d52a68

– force a checkout from master branch, throwing away local modifications

$ git checkout -f master

– revert changes in file  my_file.py

$ git checkout path/to/my_file.py

– revert file my_file.py to its state in the branch  my_branch

$ git checkout my_branch -- path/to/my_file.py

Docs for ‘git checkout’, https://git-scm.com/docs/git-checkout

https://git-scm.com/docs/git-checkout
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git – how to Stage and Commit

• Staging – add changes from the working directory to staging index

– add new (untracked) file to staging index (or new changes to a tracked file)

$ git add path/to/file

– add all changes of tracked files to the staging index

$ git add –u

• Commit – store changes within the commit tree

– changes may come from the staging index or directly from the working 

directory

– each commit requires a message to document the changes being recorded

• Some examples:

– commit the staging index, and document with a message

• if don’t specify an inline message, an editor will be invoked

$ git commit –m ‘this is my commit message’

– commit all changes in tracked files

$ git add –a

– commit changes within a specific file

$ git commit /path/to/file –m ‘file is better now’

Docs for ‘git commit’, https://git-scm.com/docs/git-commit

Docs for ‘git add’, https://git-scm.com/docs/git-add

https://git-scm.com/docs/git-commit
https://git-scm.com/docs/git-add
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git – Push & Pull

• Pull – performs a ‘fetch’ and ‘merge’ in one step

– pull the remote tracking branch into the current working directory

• if you clone a repo, it’s ‘master’ is your ‘remote tracking branch’

• we do not discuss ‘fetch’ and ‘merge’ here

$ git pull

• Push – send changes from the local branch to a remote repo

– push to the remote tracking branch

$ git push

• There are many sophisticated uses of  push &  pull 

– e.g. one can push to (or pull from) arbitrary branches in remote repos

Docs for ‘git push’, https://git-scm.com/docs/git-push

Docs for ‘git pull’, https://git-scm.com/docs/git-pull

https://git-scm.com/docs/git-push
https://git-scm.com/docs/git-pull
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git – Creating a Branch

• A branch tracks a set of (logically connected) changes
– no conflicts with concurrent modifications to the same part of the repo

• conflicts can manifest when merging two branches with overlapping changes

– a branch is a ref
• points to latest commit in corresponding ‘branch’ of the commit tree

• In our example repo (see figure on slide #6), we start with two branches
– my_branch &  master

– both initially point to the same address, 2d52a68

– after changes in each branch occur separately, we see they have diverged

• addresses 243742d &  04d25ed respectively.

• Examples of using the branch command:

– Create new branch  branch_name pointing to same address as  HEAD

$ git branch branch_name

– List local branches

$ git branch

– Delete branch named 'branch_name'

$ git branch -d branch_name

– Rename the branch  branch_name to new name:  new_branch_name

$ git branch -m branch_name new_branch_name

Docs for ‘git branch’, https://git-scm.com/docs/git-branch

https://git-scm.com/docs/git-branch
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git workflow – create, then merge a branch

• Create a new branch, named ‘issue03’

– perhaps the goal is to address issue #3 from GitHub repo

$ git checkout –b issue03

– the above is shorthand for the following two commands:

$ git branch issue03

$ git checkout issue03

• Add a new file to the branch (trivial example)

$ touch dummy.txt

$ git add dummy.txt

$ git commit –m ‘this file is empty’

$ git push –set-upstream origin issue03

• Merge this branch into the ‘master’ branch

$ git checkout master

$ git merge issue03

$ git push origin master Docs for ‘git merge’, https://git-scm.com/docs/git-merge

More workflow details here, https://git-scm.com/book/en/v2/Git-Branching-Basic-Branching-and-Merging

https://git-scm.com/docs/git-merge
https://git-scm.com/book/en/v2/Git-Branching-Basic-Branching-and-Merging
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Class discussion:

• Any questions at this point?

• Why would you want to create a branch?

• What is a ‘ref’ in the world of git?

• Today’s computer lab exercises will provide some practical experience
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GitHub overview

• GitHub & Bitbucket are two of the largest web-based hosting services

– they are targeted towards software development projects

• can be used for proposals, papers or any collection of documents

– neither supports Subversion (SVN)

• GitHub exclusively supports git;  Bitbucket supports git and mercurial

• GitHub provides the following features (and more):

– an integrated issue tracker

– branch comparison views

– native applications for Windows and Mac desktops

• https://desktop.github.com/

– support for over 200 programming languages and data formats

– GitHub pages, a feature for publishing and hosting

– SSL, SSH & https for data transmission;  two-factor authentication for login

– API integration for 3rd-party tool and other platforms

– partial support is provided for SVN

• import SVN repos into git

• GitHub repos can be cloned directly via the SVN client.

for a comparison, see  https://www.upguard.com/articles/github-vs-bitbucket

https://www.upguard.com/articles/github-vs-bitbucket
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The GitHub ‘issues’ feature

• Creating issues is a good thing
– most other tracking systems call them ‘tickets’

– every GitHub repo has it’s own set of issues

• Issues help you (or a team) keep track of 
– tasks, enhancements and bugs

• They are a very good alternative to email
– they can be shared and discussed with the team

– individuals can turn notifications on/off

– they can be closed and later re-opened

– provides a searchable archive
Docs for GitHub issues, 

https://guides.github.com/features/issues/

https://guides.github.com/features/issues/
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An example GitHub code repository

• rsbeams is a python library for 3D particle beams

rsbeams:     https://github.com/radiasoft/rsbeams

– not specific to any particular tracking code

• rsbeams is used by other Python libraries, which are code specific

rswarp:      https://github.com/radiasoft/rswarp

rssynergia:  https://github.com/radiasoft/rssynergia

• In the Computer Lab this afternoon & tomorrow, you will

– fork this repo to your own GitHub account

– clone this forked repo to your laptop or desktop

– decide what part of the code you would like to test

– create an ‘issue’ in the original repo regarding your plan to create a test

– create a branch in your working directory

– create/add/commit the test in your branch

– merge your branch into the ‘master’ branch of your forked repo on GitHub

– Issue a ‘pull request’ to the original repository

• We won’t cover all this material today

https://github.com/radiasoft/rsbeams
https://github.com/radiasoft/rswarp
https://github.com/radiasoft/rssynergia
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An overview of the  rsbeams repository
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Wrap up

• Any final questions regarding the material in this lecture?

• In the Computer Lab this afternoon, you will

– fork this repo to your own GitHub account

– clone this forked repo to your laptop or desktop

– document each of the following with an issue:

• run the existing tests

• create a branch

– create a new example, based on one of the existing tests

– merge the branch back into ‘master’

– decide what part of the code you would like to test

• create an ‘issue’ in the original repo regarding your plan to create a test


