20Ya% . °
lsu] U.S. Particle Accelerator School Outline
Education in Beam Physics and Accelerator Technology
S

* Modern parallel architectures

Intro to Parallel Computing

* Parallelization between nodes: MPI
Remi Lehe

Lawrence Berkeley National Laboratory

« Parallelization within one node: OpenMP

Why use parallel architecture?

* Example: Laser-wakefield History of CPU performance
simulation to interpret experiments at LBNL. o F - irsiet
ransistors
w 1061 ',/ (Thousands)
2 10° L Sir’égle-Thread
M Performance
L <w w“\‘\HH‘wHHM 0 1040 (SpecINT)
| - Fregquency
e 103 L o (MHZ) e
a0 2 Ty[i)ical Power
910 920 930 940 950 910 920 930 940 950 10" ¢ . (Wfatts)

. . . . « /| Number
3D grid with 2500 x 200 x 200 grid points 10"} ‘| of Cores -
0.2 billion macroparticles 10° L e e e et
140,000 timesteps (Courant limit!) 1975 1980 1985 1990 1995 2000 2005 2010 2015

Data collected by M. Horowitz, F. Labonte, O. Shacham, K. Olukotun, L. Hammond, C. Batten

~60,000 hours on 1 core = 7 years!

. . Nowadays, individual cores do not get faster.
=> Need either faster cores or more cores in parallel

%H We need to use many cores in parallel.

Parallel clusters

Contain 100,000+ cores

]
communicadon (-10 Gbis) Q’I‘g’.ﬁl‘g
B [l-H-E-E
T

Parallel clusters

B L o
. o
D*D*D]

- How to use this architecture to make a PIC code faster?
- How to use the two levels of parallelism?
%H (within one node and between nodes)

- “Traditional” CPUs: ~10 cores
- Xeon Phi: 68 cores

- GPUs: ~1000 (slow) cores

Cores within one node

share memory.
Cores from different nodes do not.

Leadership and Production Computing Facilities

Titan:
&+ Peak performance of 27.1 PF
21+ 18,688 Hybrid Compute Nodes
|+ 8.9 MW peak power

____Mira:

¥+ Peak performance of 10 PF
4+ 49,152 Compute Nodes

te 4.8 MW peak power

/!

eak performance 2.4 PF
24,608 processing cores
P.1 MW peak power

% Courtesy Steve Binkley, BESAC 2016

Class discussion

- Is the code that you use parallelized?
Do you know what technology it uses (MPl, OpenMP, etc.)?

- Do you ever use ~100 nodes, ~1000 nodes?
Did you experience difficulties associated with it (scaling, etc.)?

- Do you use GPUs?

Outline Domain-decomposition

Each node deals with a fixed chunk of the simulation box
(which includes fields on the grid + macroparticles)

* Modern parallel architectures

A
\ 4

A
A
A 4

* Parallelization between nodes: MPI

A
\

A
A 4

The nodes are not independent:
They need to exchange information with other
nodes via the network.

» Parallelization within one node: OpenMP >

“Fast” network
communication

Domain-decomposition minimizes this:
% % communications only with a few neighbors

Domain-decomposition: particle exchange

Particle pusher: macroparticles may cross domain boundaries

Domain-decomposition: field exchange

Field update: each node needs values from neighboring
nodes to calculate the spatial derivatives at the boundary

n — n n
B‘By|i+%,j,k+% - 32E1|1+%,j,k+% +61Ez‘i+%,j,k+%

Field gathering/Current deposition: with wide shape
factor, particles gather field values from other nodes and

B .~CH

deposit some current/charge to other nodes

" E

After the particle pusher, the particle data needs to E E E
be communicated from one node to the other.

But the cores from different nodes do not share memory!
% % (i.e. the required data is not readily available)

Domain-decomposition: guard cells Sum up: the PIC loop

Particle push
Update x; and p;
dx;
dt
dp;

= w;

[[]
¢
e
£}

I | |

Z o L ERviiB) <+—— Communicate particles
% Charge/current Et tthe boun?jaﬂes
I 1 | 1 § Field gathering deposition etween noaes
|| @ || || @ || || @ White: physical cells [Intcrpolatc E, B on the zi] Calculate p, j
simulated by the node from the @, vi
Blue: guard cells / a;pdate T ¥~ Communicate guard cells
[| | | | T S CURD values for charge/current
|| @ || || @ || |I @ -ommunicate O _ 2y B - poc% o
ward cells &l E E §
Each node has guard cells i.e. alues for £/B ; e —— —
cells that are a local copy of the physical cells from neighbor nodes] o
and make these values readily available. —_—T—mm
%q The guard cells need to be “synced”, whenever their value is updated. %q
,

Exchanging information: MPI

MPI: Message Passing Interface

Library that allows to send/receive information between processes:

A
|

) Example:
- Each process has an id Example in Python: . E e E particle pusher,
e o o ic vi
(or “rank”) {from mpidpy.MPI import COMM_WORLD as comm o o schematic view
- Each process executes the import numpy as np Push particle 1 Push particle 1 Push particle 1
same source code if comm.rank == @: Push particle 2 Push particle 2 Push particle 2
- Call sending/receiving # Create an array Push particle 3 Exchange particles €—> Exchange particles)
commands based on id Y s ”Z.‘°”e§(m) 1 Push particle 4 Wait Compute time
ending to ran : -
comm.Send(x, 1) Push particle 5 Wait
E 0 —> E 1 Ez Push particle 6 Wait
if comm.rank == 1: Exchange particles «—» Exchange particles v
E 3 E 4 @ 5 # Allocate empty array
X = np.empty(10) . . .
[B K B # Receive the array from 0 The simulation will always progress at the pace of the slowest

comm.Recv(x, @) node (the one doing the most work)
Print the new x

%q print x %q => Problematic when the particle distribution is very non-uniform

Parallelization within one node can be done with MPI:
Divide each nodes’s sub-domain into smaller sub-domain.
Each core is tied to one of the smaller sub-domain.

* Modern parallel architectures

core 1 core 3
"""" E “core 2 M8l core 4 E
« Parallelization between nodes: MPI e E """""""" E """""""" E} """"
» Parallelization within one node: OpenMP The smaller sub-domains have guard cells and exchange

information via MPI send/receive, within one node.
(but in this case the information does not go through

the network).
i i

Pl within one node: even worse load balancing OpenMP within one node: load balancing

- Create more subdomains than cores
(here 4 cores per node but 14 subdomains or “tiles”)

________ B o e, _.ﬂ - With OpenMP, cores are not tied to one subdomain
: cor€ 2 Bl core 4 . | Cores can work one subdomain and then switch to another
________ o : depending on the work that remains to be done.
l v . E Only possible within one node, because memory is shared
e P e — - No need for guard cells within one node.
-------- i e
! d ada i " ") u o o B ip Le
push push push push push push
push Exchange particles €= Exchange particles
push
push
push

Exchange particles €—> Exchange particles

push push push push push push push push
push push Exchange particles €«—> Exchange particles

% % Exchange particles €~ Exchange particles

OpenMP’s dangers: race condition OpenMP: practical consideration

- On the developer side:
Not available in Python, but available in C and Fortran
Requires to use “pragmas” in the code.

Example in Fortran:

i I1$OMP PARALLEL DO |(Use OpenMP to do the loop in parallel)
ARENE. . Lo DO it=1,nt (Loop over “tiles”)
"’..E ® ' ' ' H i H H h H
T — — (Perform work on one “tile”)
Core 2 performs Race Core 3 performs ENDDO
current deposition condition! current deposition
- The cores do not exchange information via MPI send/receive. - Warp does not use OpenMP for the moment

Instead they directly modify the value of the current in shared

memory, without notifying the other cores. - But Warp can use PICSAR, which does use OpenMP

- Potentially, two cores could simultaneously try to modify the value PICSAR = highly-optimized library for elementary operations,
of the current in a given cell (leads to inconsistencies). such as particle pusher, current deposition, field gathering, etc.

%q This can be avoided with proper care (e.g. “atomic operations”). %q PICSAR is soon to be released as open-source.

- Conceptual similarities with OpenMP programmin
load bglancmg by tiling, race C(fnd]t,on‘; ¢ & Parallel architectures are organized around

(at least) two levels of parallelization:

- But also differences: - Inter-nodes (uses network)

~1000s (slow) cores instead of 10-60 cores

Only connected to the network through an associated CPU - Intra-node (uses shared memory)
GPU programming uses specific language (CUDA, OpenCL, ...)
° « PR ” . :
- The trend for the future is to bridge the difference between The tragllthnal parad]gm (m the PIC
many-core CPUs and GPU: community) is to use MPI at both levels.
hardware (more cores on CPU, GPUs to be integrated with CPUs) This is limited, esp. due to load-balancing.

language (OpenMP starts targeting GPUs)

* “Novel” paradigms are becoming more and
more common: MPI+OpenMP (with tiles),
MPI1+GPU, etc.

