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Outline

• Modern parallel architectures 
 
 

• Parallelization between nodes: MPI 
 
 

• Parallelization within one node: OpenMP



Why use parallel architecture?

• Example: Laser-wakefield  
simulation to interpret experiments at LBNL. 
 
 
 
 
 
 
 
3D grid with 2500 x 200 x 200 grid points 
0.2 billion macroparticles 
140,000 timesteps (Courant limit!) 
 
~60,000 hours on 1 core = 7 years!  
=> Need either faster cores or more cores in parallel



Why use parallel architectures?

History of CPU performance

Nowadays, individual cores do not get faster. 
We need to use many cores in parallel.



Parallel clusters

Contain 100,000+ cores

“Fast” network  
communication (~10 Gb/s)

Individual node



Leadership and Production Computing Facilities

Titan: 
• Peak performance of 27.1 PF 
• 18,688 Hybrid Compute Nodes
• 8.9 MW peak power

Mira: 
• Peak performance of 10 PF
• 49,152 Compute Nodes
• 4.8 MW peak power

Edison XC30: 
•Peak performance 2.4 PF
•124,608 processing cores 
•2.1 MW peak power

Courtesy Steve Binkley, BESAC 2016 



Parallel clusters

- How to use this architecture to make a PIC code faster?  
- How to use the two levels of parallelism?  
  (within one node and between nodes)

Individual nodes have several cores 
(i.e. computing units):  
 
- “Traditional” CPUs: ~10 cores 

- Xeon Phi: 68 cores 

- GPUs: ~1000 (slow) cores
 
Cores within one node  
share memory.  
Cores from different nodes do not.
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Class discussion

- Is the code that you use parallelized?  
  Do you know what technology it uses (MPI, OpenMP, etc.)?

- Do you ever use ~100 nodes, ~1000 nodes?  
  Did you experience difficulties associated with it (scaling, etc.)?

- Do you use GPUs?
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Domain-decomposition

Each node deals with a fixed chunk of the simulation box 
(which includes fields on the grid + macroparticles)

 “Fast” network  
communication

The nodes are not independent: 
They need to exchange information with other 
nodes via the network.  
 
Domain-decomposition minimizes this:  
communications only with a few neighbors



Domain-decomposition: particle exchange

Particle pusher: macroparticles may cross domain boundaries

After the particle pusher, the particle data needs to 
be communicated from one node to the other.



Domain-decomposition: field exchange
Field update: each node needs values from neighboring 
nodes to calculate the spatial derivatives at the boundary  
 

Field gathering/Current deposition: with wide shape 
factor, particles gather field values from other nodes and 
deposit some current/charge to other nodes

But the cores from different nodes do not share memory! 
(i.e. the required data is not readily available)
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Domain-decomposition: guard cells

Each node has guard cells i.e.  
cells that are a local copy of the physical cells from neighbor nodes 
and make these values readily available.

The guard cells need to be “synced”, whenever their value is updated.

White: physical cells  
simulated by the node

Blue: guard cells



Sum up: the PIC loop

Communicate particles 
at the boundaries 
between nodes

Communicate guard cells 
values for charge/current

Communicate 
guard cells 
values for E/B



Exchanging information: MPI

MPI: Message Passing Interface  
 
Library that allows to send/receive information between processes:  
 
  - Each process has an id  
      (or “rank”)  
  - Each process executes the  
      same source code 
  - Call sending/receiving  
      commands based on id
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Example in Python:



Problem: load balancing

The simulation will always progress at the pace of the slowest 
node (the one doing the most work) 
=> Problematic when the particle distribution is very non-uniform 

Push particle 1 Push particle 1 Push particle 1

Push particle 2 Push particle 2 Push particle 2

Push particle 3 Exchange particles Exchange particles

Push particle 4 Wait …

Push particle 5 Wait

Push particle 6 Wait

Exchange particles Exchange particles

Example:  
particle pusher,  
schematic view

Compute time
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Parallelization within one node: MPI

Parallelization within one node can be done with MPI: 
Divide each nodes’s sub-domain into smaller sub-domain.  
Each core is tied to one of the smaller sub-domain.

core 1 core 3
core 2 core 4

The smaller sub-domains have guard cells and exchange 
information via MPI send/receive, within one node.  
(but in this case the information does not go through 
the network).



MPI within one node: even worse load balancing!

core 1 core 3
core 2 core 4

core1 core2 core3 core4 core1 core2 core3 core4 core1 core2 core3 core4

push push push push push push

push Exchange particles Exchange particles

push

push

push

Exchange particles Exchange particles



OpenMP within one node: load balancing
- Create more subdomains than cores  

(here 4 cores per node but 14 subdomains or “tiles”) 
- With OpenMP, cores are not tied to one subdomain 

Cores can work one subdomain and then switch to another  
depending on the work that remains to be done. 
Only possible within one node, because memory is shared 

- No need for guard cells within one node.

core1 core2 core3 core4 core1 core2 core3 core4 core1 core2 core3 core4

push push push push push push push push

push push Exchange particles Exchange particles

Exchange particles Exchange particles



OpenMP’s dangers: race condition

Core 2 performs  
current deposition

Core 3 performs  
current deposition

- The cores do not exchange information via MPI send/receive.  
Instead they directly modify the value of the current in shared 
memory, without notifying the other cores.  

- Potentially, two cores could simultaneously try to modify the  value 
of the current in a given cell (leads to inconsistencies). 
This can be avoided with proper care (e.g. “atomic operations”).

Race  
condition!



OpenMP: practical consideration

- On the developer side:  
Not available in Python, but available in C and Fortran  
Requires to use “pragmas” in the code.  
 
Example in Fortran:  
!!$OMP PARALLEL DO (Use OpenMP to do the loop in parallel)  
DO it=1,nt         (Loop over “tiles”)  
    …  
    …                   (Perform work on one “tile”)  
ENDDO  

- Warp does not use OpenMP for the moment 

- But Warp can use PICSAR, which does use OpenMP  
PICSAR = highly-optimized library for elementary operations, 
such as particle pusher, current deposition, field gathering, etc. 
PICSAR is soon to be released as open-source.



GPU programming
- Conceptual similarities with OpenMP programming:  

load balancing by tiling, race conditions 

- But also differences:  
~1000s (slow) cores instead of 10-60 cores  
Only connected to the network through an associated CPU  
GPU programming uses specific language (CUDA, OpenCL, …)  

- The trend for the future is to bridge the difference between  
many-core CPUs and GPU:  
hardware (more cores on CPU, GPUs to be integrated with CPUs) 
language (OpenMP starts targeting GPUs) 



Summary

• Parallel architectures are organized around  
(at least) two levels of parallelization:  
- Inter-nodes (uses network)  
- Intra-node (uses shared memory)  

• The “traditional” paradigm (in the PIC 
community) is to use MPI at both levels.  
This is limited, esp. due to load-balancing. 

• “Novel” paradigms are becoming more and 
more common: MPI+OpenMP (with tiles),  
MPI+GPU, etc. 


