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S1: Overview

In our treatment of transverse single particle orbits of lattices with s-varying
focusing, we found that Hill's Equation describes the orbits to leading-order

approximation:

" (s) + Kz (s)z(s)
y"(s) + Ky (s)y(s)
where Kz ($), Ky (s) are functions that describe linear applied focusing forces
Of the lattice

+ Focusing functions can also incorporate linear space-charge forces
- Self-consistent for special case of a KV distribution

0
0

In analyzing Hill's equations we employed phase-amplitude methods
+ See: S.M. Lund lectures on Transverse Particle Dynamics, S8, on the betatron
form of the solution

C16(8) = Am@ms Y (5) Azi = const ds
SB:(5)BL(s) = 782(5) + Ra(8)B2(s) =1 el8) =¥mit | 775
Br(s + Ly) = Be(s)
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This formulation simplified identification of the Courant-Snyder invariant:

2

Wy

which helped to interpret the dynamics.

We will now exploit this formulation to better (analytically!) understand resonant
instabilities in periodic focusing lattices. This is done by choosing coordinates
such that stable unperturbed orbits described by Hill's equation:

2"(8) + kep(8)x(s) =0

are mapped to a continuous oscillator

7"(5) + k5o (3) = 0
/%%0 = const > 0

Y. = Transformed Coordinate

+ Because the linear lattice is designed for single particle stability this
transformation can be effected for any practical machine operating point
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These transforms will help us more simply understand the action of perturbations
(from applied field nonlinearities, ....) acting on the particle orbits:

z''(5) + ki (s)2(5) = Pu(s;x1,%, 6)
y"(8) + ky(s)y(s ):Py(SQXL,Xl,g)
Pz, Py = Perturbations

5 = Extra Coupling Variables

For simplicity, we restrict analysis to:

Vo3 = const No Acceleration
0=20 No Axial Momentum Spread
»=0 Neglect Space-Charge

+ Acceleration can be incorporated using transformations
(see Transverse Particle Dynamics, S10)
+ Comments on space-charge effects will be made in S7

We also take the applied focusing lattice to be periodic with:
Ke(S+ Lp) = Ky(S)

Ky(s+ Lp) = ry(s)
SM Lund, USPAS, June 2011 Particle Resonances 7

L, = Lattice Period




For a ring we also always have the superperiodicity condition:
Pr(s+Cixy,x|, 5) = P.(s;x1,x, 5)
P,(s+Cixy,x'|, 5) =Py(s;x,,%x|, g)

C = N'L, = Circumference Ring

N = Superperiodicity

Perturbations can be Random and/or Systematic:

Random Errors in a ring will be felt once per particle lap in the ring rather than

every lattice period

Paz,y("' 78+NLP):PCU,’9(”' ,S)

Random Error Sources:
+ Fabrication

12 Period Ring Construction .
(SIS—18, GSI) ~ Error * Assembly/Construction
* Material Defects
* o000
Latice | C = 12L, = Ring Circumference

Period
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Systematic Errors can occur in both linear machines and rings and
effect every lattice period in the same manner.

Example: FODO Lattice with the same error in each dipole of pair

Pwy( 95+Lp):Pa:,y("' ,S)

12 Period Ring

Systematic Error Sources:
* Design Flaw/Limit/Ideal
* Repeated Construction

+ or Material Error
v ...

(SIS-18, GSI)

Lattice
Period

We will find that perturbations arising from both random and systematic error can
drive resonance phenomena that destabilize particle orbits and limit machine
performance
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S2: Floquet Coordinates and Hill's Equation

Define for a stable solution to Hill's Equation
+ Drop x subscripts and only analyze x-orbit for now to simplify analysis
+ Later will summarize results from coupled x-y orbit analysis

: . T
“Radial” Coordinate: U= —

Vi
1[5 ds Ad(s)

“Angle” Coordinate: — —
S ’ Vo Js, B (3) %0

(dimensionless, normalized)
where:

B = w? = Betatron Amplitude Function

_ AY(NL,) Noog  Number underpressed x-betatron

27 2w oscillations in ring
1) = Phase of x-orbit

Arp(s) = (s) — P(si)

Can also take NV = 1 and then V0 is the number (usually fraction thereof) of
undepressed particle oscillations in one lattice period
SM Lund, USPAS, June 2011 Particle Resonances
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Comment:
@ can be interpreted as a normalized angle measured in the particle betatron

phase advance:

Ring: = ¢ advances by 27 on one transit

(N = Superperiod #) around ring for analysis of Random Errors

Linac or Ring: —> ( advances by 27 on transit through one lattice

(N =1) period for analysis of Systematic Errors in
a ring or linac

Take ¢ as the independent coordinate:

u = u(p)
and define a new “momentum’ phase-space coordinate
_du . d
dy  dy

These new variables will be applied to express the unpreturbed Hill's equation in a
simpler (continuously focused oscillator) form
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From the definition

Rearranging this and using the chain rule:

ZEZ\/BU

o du dy d dy d
/
p— —|— e - = —
g 2\/Bu ﬁdgo ds ds dsdyp
From:
1 (7 ds dp 1
= — — ! =
=W ), B) ds — wp
we obtain
o o - 1 N 0 (cancels)
2v/0 Vo3
d /6” /6,2 @/ . @/ . 1
n_ %o . -
S N/ Y T- A ¢ e V2 3372

2%53/2
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Summary:
g 1
I u -+
VB vo/B
/6” ,6/2 1
no__ = L
TR Bt gt T e

Using these results, Hill's equation:

z"(s) + Kk (8)x(s) =0

becomes
/! /2
il + v %—%4—%,@2 u =0

But the betatron amplitude equation satisfies:

1 /2
Pk =1 Bls+ L) =B(s)

Thus the terms in [...] = 1 and Hill's equation reduces to simple harmonic
oscillator form:

U

i

i + vgu = 0 Vg = const > 0

Transform has mapped a stable, time dependent solution to Hill's equation to a

stimple harmonic oscillator!
SM Lund, USPAS, June 2011 Particle Resonances
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The general solution to the simple harmonic oscillator equation
can be expressed as:

u(p) = u; cos(vop) + 1/_; sin(vop)
u(p) = —uvp sin(rvop) + U; cos(vop)
o u; and u; set by z, 2’
u(p = 0) = u; = const initial conditions at s = s;
(e = 0) = u; = const (phase choice ¢ =0 at s = s;)

The Floquet representation also simplifies the interpretation of the
Courant-Snyder invariant:

N L\ 2
i U

u? + (—) — u? + (—Z> = ¢ = const
140 Vo

» Unperturbed phase-space in © — /g is a unit circle of area 7€ !
+ Relate this area to x-x' phase-space area shortly

- Preview: areas are equal due to the transform being symplectic

- Same symbols used as in Transverse Particle Dynamics is on purpose
SM Lund, USPAS, June 2011 Particle Resonances
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Unperturbed phase-space ellipse:

iL/VO A

This simple structure will also allow more simple visualization of perturbations as
distortions on a unit circle, thereby clarifying symmetries:

Pic to be replaced ... bad example
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The u — /1 variables also preserve phase-space area
+ Feature of the transform being symplectic (Hamiltonian Dynamics)

From previous results:

r = /Bu do _ 1
, B dp. 0 1. ds  vof
x_Q\/Bu_l_\/BEU_Q\/Bu_l_Vo\/Bu

Transform area elements by calculating the Jacobian:

dx @ dz’ = |J|du @ di

or  Ow 0 1
J = det gg’/ gg/ ] = det \1/3? 1 o J—
du  Ou 2B  voVpB Lo
I
dr ® dx’ = du ® au
0

Thus the Courant-Snyder invariant € is the usual single particle emittance in x-x'

phase-space; see lectures on Transverse Dynamics, S7
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S3: Perturbed Hill's Equation in Floquet Coordinates

Return to the perturbed Hill's equation in S1:

2" (5) + ki (s)2(s) = Pr(s; x1,%, 6)
Y (s) + ry(s)y(s) = Py(six1, %, 6)
Pz, P, = Perturbations

—

0 = Extra Coupling Variables

Drop the extra coupling variables and apply the Floquet transform in S2:
+ Examine only x-equation, y-equation analogous
* Drop x-subscript in P, to simplify notation

i+ viu = 1233 *P

s(p), v/ Bu,y, )

T Transform y similarly to x
If analyzing general orbit with x and y motion

SM Lund, USPAS, June 2011 Particle Resonances 17
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Expand the perturbation in a power series:
* Can be done for all physical applied field perturbations
+ Multipole symmetries can be applied to restrict the form of the perturbations
- See: S4 in these notes and S3 in Transverse Particle Dynamics
+ Perturbations can be random (once per lap; in ring) or systematic (every lattice
period; in ring or in linac)

P(ZU, Y, S) — PO(ya S) + Pl(yv S)ZE + PZ(yv S)CEQ

— Z P"fl (ya S)xn
n=0

Take:

a::\/Bu

to obtain:

o0
i + vgu = 13 Z ﬁnTJran(y, s)u”
n=0

A similar equation applies in the y-plane.
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S4: Sources and Forms of Perturbation Terms

Within a 2D transverse model it was shown that applied magnetic fields can be
expanded as:

* See: S3, Transverse Particle Dynamics
+ Applied electric fields can be analogously expanded

b, = const (complex) = A,, — i3, z=zr+1y  i=+v-1
n = Multipole Index r, = Aperture ”Pipe” Radius

B,, =— ”Normal” Multipoles
A,, = "Skew” Multipoles

Cartesian projections: B, — iBy = (A, — iB3,)(x + iy)" ' /r2—!

Index | Name Normal (A,, = 0) Skew (B,, = 0)

n erg_l/Bn Byry~ /B, Bx'rg_l/An Byrg_l/An

1 Dipole 0 1 1

2 Quadrupole | y x x —q

3 Sextupole 2xy :U2 y? x? — y? —2xy

4 Octupole 3x2y — y° :U — 3:By 23 — 3xy? —3z%y +y°

5 Decapole 43y — dxy?  xt —62%y? +yt | 2t —622%y? +yt  —4xdy + dayd
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Trace back how the applied magnetic field terms enter the x-plane equation of

motion:

* See: S2, Transverse Particle Dynamics
* Apply equation in S2 with: 3, = const, ¢ ~ const, E ~ 0, B% ~ (

/!

q
BG;
mypBec Y

Express this equation as:

" + ke (8)x

q

mYpFpC

{B; (ZU, Y 8) B B; (CE, Y 8) ’lin m-foc}

f

Nonlinear focusing terms only in []

* “Normal” part of linear applied magnetic field contained in focus func Kz

Compare to the form of the perturbed Hill's equation:

2+ ko =P, = Z Py, s)z"
n=0

SM Lund, USPAS, June 2011
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Gives:

_ q a a
:> 7)3; — mvb/@bc |:By — By ’hn gc-focj|
where the y-field components can be obtained from the multipole expansion as:
y i o° .o\ n—1
o B =>b, (S
* r
B”Z |lin x-focus — —Im[ﬁ |n:1 term] n—1 D

+ Use multipole field components of magnets to obtain explicit form of field
component perturbations consistent with the Maxwell Equations

+ Caution: Multipole index n and power series index nin P, expansion not
the same (notational overuse: wanted analogous symbol)

- Multipole: n=1  Dipole n=3 Sextupole
n=>2 Quadrupole n=...
- Power Series for Py
x-plane Motion (y=0) x-y plane motion
n=0 Dipole Depends on form of y-coupling

n=1 Quadrupole
n=2 Sextupole

» Similar steps employed to identify y-plane perturbation terms or perturbations

for applied electric field components
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S6: Solution of the Perturbed Hill's Equation: Resonances

Analyze the solution of the perturbed orbit equation:

o0
i + vgu = 13 Z ﬁnTH?n(y, s)u'"
n=0

derived in S4.
To more simply illustrate resonances, we analyze motion in the x-plane with:
y(s) =0

+ Essential character of general analysis illustrated most simply in one plane

» Can generalize by expanding Pr (Y, S) in a power series in y and generalizing
notation to distinguish between Floquet coordinates in the x- and y-planes
- Results in coupled x- and y-equations of motion

Note that each n-labeled perturbation expansion coefficient is periodic with period
of the ring circumference (random perturbations) or lattice period (systematic):

B(s+ Ly) =p(s), Puly,s _l_NLp) = Pn(y,s)

n—+3 n+3

— 072 (s+NLy,)Pu(y,s+NL,) =082 (s)Pn(y,s)
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Expand each n-labeled perturbation expansion coefficient in a Fourier series as:

n—+3

Py 0,5) = 3" Cope?
k=—o0

1, Random perturbation

(once per lap in ring)

i=+—1 P =9

N, Systematic perturbation

(every lattice period)

\

™/ P .
On,k:/ d_gp —itkpY 375 +3() Py =0,8) = const

—7/p 27T (complex-valued)

° 1 ds
5= s(p) v /80 vy 3(5)

* Can apply to Rings for random perturbations (with p = 1)
or systematic perturbations (withp = N)

» Can apply to linacs for periodic perturbations (every lattice period) with p = 1
+ Does not apply to random perturbations in a linac

- In linac random perturbations will vary every lattice period and drive random walk

type effects but not resonances
SM Lund, USPAS, June 2011
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The perturbed equation of motion becomes:

oo k=oc

u—|—y§u — V(Q) SJ SJ Cn’kezkpﬁﬁun

n=0 k=—oc

Expand the solution as:

up = unperturbed solution
U = ug + ou

du = perturbation due to errors

where Uo 1s the solution to the simple harmonic oscillator equation in the
absence of perturbations:

Unperturbed

.e 2 . . ]
U + vyug = 0 equation of motion

Assume small-amplitude perturbations so that

[uo| > |0u|

Then to leading order, the equation of motion for du is:
oo  k=o0

g 2 2 ipkp, n
ou + vyou >~ v SJ SJ Ch ke uy

n=0 k=—oc
SM Lund, USPAS, June 2011 Particle Resonances
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To obtain the perturbed equation of motion, the unperturbed solution ug 1s
inserted on the RHS terms

+ Gives simple harmonic oscillator equation with driving terms

Solution of the unpreturbed orbit is simply expressed as:
et(roptei) _ ;o—i(vopte:)
2

Set by particle initial conditions:
/ /
@; =const  x(s;) =z, x(8;) =2,

Up = Ug; COS(Vop + ¢i) = Uo;
Ug; = const

Then binomial expand:
N o 67:(’/0‘10+<pi) _|_ 6_7:(”090+90i) n
Up;

UO: 2

_ Ug; 3y (n)ei(n—m)('/090+90i)e—im(voso+90i)

27 m
m=0
n N
_ Up; E , n ei(n—2m)u0<,pei(n—2m)cpi
2" m
m=0
ny _ n! L .
where = — ' 1s a binomial coefficient
m m!(n —m)!
SM Lund, USPAS, June 2011 Particle Resonances
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Using this expansion the linearized perturbed equation of motion becomes:

oo k=00
dutvgdus=vgy Y 7 (m) 2 il(nm2m)votpkle giln—2m)e:

n=0 k=—oc m=0

The solution for ou can be expanded as:
0U = 0Up, + 0Up
dup = homogenous solution

General solution to: 5uh + 1/3 oup, =0

ou, = particular solution

Any solution with:  §u — Ju,,

+ Can drop homogeneous solution because it can be absorbed in unperturbed
solution ug
- Exception: some classes of linear amplitude errors in adjusting magnets

* Only a particular solution need be found, take:

0U = 0Uyp
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ez’[(n—Zm)uo +pk|p ez’(n—Zm)(p@-

oo k=00
Sut i~ kS S T(m)

n=0 k=—occ m=0

Equation describes a driven simple harmonic oscillator with a periodic driving
terms on the RHS:
+ Homework problem reviews that solution of such an equation will be unstable
when the driving term has a frequency component equal to the restoring term
- Resonant exchange and amplitude grows linearly in ¢
- Parameters meeting resonance condition will lead to instabilities

Resonances occur when:

(n —2m)vy + pk = 1y

1s satisfied for the operating tune /o and some values of:
n=20,1, 2, --- m=0,1,2,---, n
k=—-o00, -+, —1,0, 1, -+, 00
1, Random perturbation

b= N, Systematic perturbation
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If growth rate 1s sufficiently large, machine operating points satisfying the

resonance condition will be problematic since particles will be lost (scraped) by

the machine aperture due to increasing oscillation amplitude:
* Machine operating tune ( g) can be adjusted to avoid
+ Perturbation can be actively corrected to reduce amplitude of driving term

Low order resonance terms with smaller n, k, m magnitudes are expected to be
more dangerous because:

+ Less likely to be washed out by effects not included in model

+ Amplitude coefficients expected to be stronger

In the next section we will examine how resonances restrict possible machine
operating parameters.

SM Lund, USPAS, June 2011 Particle Resonances
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S7: Machine Operating Points:
Tune Restrictions Resulting from Resonances

Examine situations where the x-plane motion resonance condition:

(n — 2m)vy + pk = t1y

is satisfied for the operating tune /9 and some values of:
n=20,1, 2, --- m=0,1,2,---, n
k=—-o00, ---, —1,0, 1, -+, 00

_J1, Random perturbation
b= N, Systematic perturbation

Resonances can be analyzed one at a time using linear superposition
+ Analysis valid for small-amplitudes

Analyze resonance possibilities starting with index n <==> Multipole Order

SM Lund, USPAS, June 2011 Particle Resonances 20




n = 0, Dipole Perturbations:

n=0, — m=20
and the resonance condition gives:
vy = £pk pk = integer k=—-oc0, ---, —1,0,1, ---, o

] 1, Random perturbation
P N, Systematic perturbation

Therefore, to avoid dipole resonances integer tunes operating points not allowed:

p=1 Random Perturbation v # 1, 2,3, -+

p=N Systematic Perturbation vo N, 2N, 3N, ---

+ Systematic errors are less restrictive on machine operating points
* Multiply random perturbation tune restrictions by A/ to obtain the
systematic perturbation case

SM Lund, USPAS, June 2011 Particle Resonances 30




Interpretation of result:
Consider a ring with a single (random) dipole error along the reference path of
the ring:

Construction
Error

If the particle is oscillating with integer tune, then the particle experiences the
dipole error on each lap in the same oscillation phase and the trajectory will
“walk-off”” on a lap-to-lap basis in phase-space:

+ With finite machine aperture the particle will be scraped/lost

b

X A
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n = 1, Quadrupole Perturbations:

n=1, = m=0,1
and the resonance conditions give:
n=1 m=0: vy + pk = 1y k
— pk =0, vy = :|:p—
n=1m=1: —yy+ pk = +14 2

Implications: Case can be treated by “renormalizing” oscillator

Hpk=0=k=0 focusing strength and need not be considered
i + vgu = v5C1 gu
pk |pk|
2 =t— = 1yy=—
) 1o 2 °T 9

Therefore, to avoid quadrupole resonances, half-integer tune operating points not

allowed:
k] ~J1, Random perturbation
vy F pT P N, Systematic perturbation
k=—00, -, =1,0,1, -+, 00

+*New restriction on machine tunes from being half-integer values
+ Integers also restricted for p = 1 random, but redundant with dipole case
+ Some large integers restricted for p = N random
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Interpretation of result (new restrictions):

For a single (random) quadrupole error along the azimuth of a ring, a similar
qualitative argument as presented in the dipole resonance case leads on to
conclude that if a particle oscillates with Y2 integer tune, then the orbit can “walk-
off” on a lap-to-lap basis in phase-space:

x” A
Laps ° +8
o 10
* +4

o +2

ith = Initial Lap .i

Construction
X Error

Y

+10

13 o

Laps

+7®
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n =2, Sextupole Perturbations:

n=2 = m=0, 1, 2

and the resonance conditions give:

n=2 m=20: 219 + pk = *1
n=2 m=1: pk = £
n=2 m=2: —2vy+pk==x1y

Therefore, to avoid sextupole resonances, the following tunes are not allowed:

( pk integer {1, Random perturbation
p p—

Vo # { |pk|/2 half-integer N, Systematic perturbation
_|pk|/3  third-integer k=—00, -+, —1,0,1, -+, 00

+ Integer and Y2-integer restrictions already obtained for dipole and quadrupole
perturbations
+ 1/3-integer restriction new
Higher-order (n > 2) cases analyzed analogously

+ Produce more constraints but expected to be weaker as order increases
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General form of resonances

The general resonance condition (all n-values) for x-plane motion can be
summarized as:

My = N M, N = Integers of same sign

|M| = ”Order” of resonance

+ Higher order numbers M are generally less dangerous
- Longer coherence length for validity of theory: effects not included can
“wash-out” the resonance
- Coefficients generally smaller

Particle motion is not, in general, restricted to the x-plane, and a more general
analysis taking into account coupled x- and y-plane motion shows that the
generalized resonance condition is:

M, M,, N = Integers of same sign

Myvyr + Myvg, = N
0z y "0y M| + |M,| = ”Order” of resonance

Vo = Z-plane tune

Voy = Y-plane tune

+ Lower order resonances are generally more dangerous analogously to x-case
SM Lund, USPAS, June 2011 Particle Resonances 35




Restrictions on machine operating points

Tune restrictions are generally plotted in Yo — Yoy space order-by-order up to a
max order value to find allowed tunes where the machine can safely operate
* Often 3" order is chosen as a maximum to consider
* Cases for random (p = 1) and systematic ( p = N) perturbations considered

Machine operating points chosen as far as possible from low order resonance lines
Systematic Perturbations

i+ 1

: 2
’Ly+§
iyt 3
Py ¥y g

: 1
’Ey+g

Random Perturbations

p=1

N
1

I

i+ 1

teti et

g
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Discussion:

Random errors:
* Errors always present and give low-order resonances
+ Usually have weak amplitude coefficients
- Can be corrected to reduce effects

Systematic errors:
+ Lead to higher-order resonances for large N and a lower density of resonance
lines (see plots on previous slide comparing the equal boxed red areas)
- Large symmetric rings with high N values have less operating
restrictions from systematic errors
- Practical issues such as construction cost and getting the beam
into and out of the ring can lead to smaller N values (racetrack lattice)
+ BUT systematic error Amplitude coefficients can be large
- Systematic effects accumulate in amplitude period by period

Resonances beyond 3™ order rarely need be considered
+ Effects outside of model assumed tend to wash-out higher order resonances

More detailed treatments calculate amplitudes/strengths of resonant terms
+ See accelerator physics references: ....
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S8: Space-Charge and Other Effects Altering Resonances

Ring operating points are generally chosen to be far from low-order resonance
lines in x-y tune space. Processes that act to shift resonances closer towards the
low-order lines can prove problematic:

+ Oscillation amplitudes increase (spoiling beam quality and control)

+ Particles can be lost
Tune shift limits of machine operation are often named “Laslett Limits” in honor
of Jackson Laslett who first calculated tune shift limits for many processes:

+ Image charges

+ Image currents

+ KV model linear self-fields internal to the beam

+

Processes shifting resonances can be grouped into two broad categories:

Coherent Same for every particle in distribution
+ Usually most dangerous

Incoherent Different for particles
in separate parts of the distribution

+ Usually less dangerous: only effects part of beam
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Laslett space-charge limit

Laslett first obtained a space-charge limit for rings by assuming that the beam
space-charge is uniformly distributed as in a KV model and thereby acts as a
coherent shift to previously derived resonance conditions. Denote:

Vo = x-tune (bare) in absence of space-charge

v, = x-tune (depressed) with uniform density beam

Av, = 1y, — V; = Space-charge tune shift Av, > 0

Assume that dipole (integer) and quadrupole (half-integer) tunes only need be
excluded when space-charge effects are included.

* Space-charge likely induces more washing-out of higher-order resonances
If the bare tune operating point 1s chosen as far as possible from Y2 -integer
resonance lines, the maximum space-charge induced tune shift allowed is Y4-
integer, giving:

1 Establishes maximum current
AVg|max = = = (use KV results in lectures on
4 Transverse Equilibrium Distributions)

+ Analogous equation applies in the y-plane

- Identical restriction in lattices with equal x- and y-focusing strengths
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Simple estimate of maximum perveance allowed under the Laslett limit:

Consider a ring with:

N = Lattice Periods o
— Vor = Voy = Vo = -
L, = Lattice Period ’ Y 27

oo = Phase advance in z- or y-directions

Model the focusing as continuous and assume an unbunched, transverse matched
KV distribution with:

, 1 ofs 2T
Ky = Ky = k3o = const F i pO = 7 =
x ) 30 ocusing Lp N Lp
Er = €y = € = const Emittance
_ qA _
Q = dmeomAB i = const  Perveance
The matched envelope equation gives:
Ty = Ty = Tp = const
0 4 kZ 2 2
/ 2 Q & 2 @+ po° +@
m + kagtp — — — —= =0 — reé —
b povo Ty 'rg’ b 2/6%0
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Depressed phase advance per lattice period can then be calculated from formulas
in lectures on Transverse Equilibrium Distributions as:

Q sitlp g Two forms equivalent
B0 2 ~p 2 from envelope equation
Ty si "
using
o koo g2 9 o=ksL
v=N_— 3 B0 — 32 p
27 Tb

and previous formulas gives:

2
v=1vy |1— ¢

T V2
T S @

Setting the phase shift to the Laslett current limit value

1
V‘Q:Qmax — Vo — Z
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gives a constraint for the maximum value of ¢ = (max to avoid
1/2-integer resonances:

2
2 x vo— 1/4 1
Qma :1_<o /) = — (o —1/8)
1672 p2e? 5 2VO
Qmax + ./\/'ZL?) + Qmax
This can be arraigned into a quadratic equation for max and solved to show that

the Laslett “current” limit expressed 1n terms of the maximum transportable
perveance:

TE vy — 1/8) 1 Q =
< Wmax = 2 3322
Q<= 37 (M5 — o meam e
o 21/0 Vo — qI
2meqmy; Byc
e 1 b
~ 1+ — + Order(1/vg
NL, ( T 810 + Order(1/15) ) I = Beam Current

/l Example: Take (typical synchrotron numbers, represents peak charge in rf bunch)
NL, =C = Ring Circumfrance ~ 300 m
g ~ 50 mm-mrad — Q< Qumax =~ LN 5x 1077

C
Neglect 1/ term Not a lot of charge .... /1
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Discussion:

Laslett limit may be overly restrictive:
+ KV model assumes all particles in beam have the same tune

- Significant spectrum of particle tunes likely in real beam

Particularly if space-charge strong: see Transverse Equilibrium Dists, S7
- No equilibrium beam: core oscillates and space-charge may act
incoherently to effectively wash-out resonances

30¢

For strong
space-charge:

* Frequency spread 20¢F
large and KV ;
15¢

approx bad :

+ Does not work in 10¢

spite of beam
density being near
uniform density for
smooth distribution

/F
o

Frequency Distributio

oo n

0 02

""" Frequency 3
Distribution /0o = 0.9 /
Thermal Equilibrium \ ]
Beam ;

Oscillation Frequency, ks/kao

For weak space-charge:

+ Frequency spread
small and KV
approx good

+ Works in spite of
beam density being
far from uniform
density for smooth
distribution

+ Simulations suggest Laslett limit poses little i1ssues over 10s — 100s of laps in
rings (Small Recirculator, LLLNL) and in fast bunch compressions in rings
- Longer simulations very difficult to resolve: see Simulation Techniques
+ Future experiments can hopefully address this issue
- University of Maryland electron ring will have strong space-charge
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Discussion Continued:
+ Even if internal resonances in the core of the beam are washed out due to
nonlinear space-charge at high intensity, centroid resonances may still behave
more as a single particle (see notes on Transverse Centroid and Envelope

Descriptions of Beam Evolution) to limit beam control.
- Steering and correction can mitigate low order centroid instabilities

More research on this topic is needed!
+ Higher intensities can open new applications for energy and material
processing
+ Many possibilities to extend operating range of existing machines and make
new use of developed technology
* Good area for graduate thesis projects!
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These notes will be corrected and expanded for reference and future editions of
US Particle Accelerator School and University of California at Berkeley courses:
“Beam Physics with Intense Space Charge”
“Interaction of Intense Charged Particle Beams
with Electric and Magnetic Fields”
by J.J. Barnard and S.M. Lund

Corrections and suggestions for improvements are welcome. Contact:

Steven M. Lund
Lawrence Berkeley National Laboratory
BLDG 47 R 0112

1 Cyclotron Road
Berkeley, CA 94720-8201

SMLund @1bl.gov
(510) 486 — 6936

Please do not remove author credits in any redistributions of class material.
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