
This material is based upon work supported by the U.S. Department of Energy Office of Science under Cooperative Agreement DE-SC0000661, the State of Michigan and Michigan

State University. Michigan State University designs and establishes FRIB as a DOE Office of Science National User Facility in support of the mission of the Office of Nuclear Physics.

WONG, Chun Yan Jonathan; HAO, Yue;
LUND, Steven; RICHARD, Christopher;

USPAS Accelerator Physics

June 2018

(Version 20180606)

01: Introduction to Beam Simulations

Numerical Modeling in Accelerator Science

C. Y. Wong, June 2018 USPAS Accelerator Physics, Slide 2

▪Numerical modeling with computers is an essential part of scientific
research
• Insight

• Complement theory and experiment
»Explore inaccessible parameters

»Apply to systems too complicated for pure theoretical approach

• Graphical display & visualization
»Can measure non-interactively to improve insight

▪Many types of computational studies employed in accelerator science
and engineering
• Beam dynamics

• Electromagnetic and static modeling of lattice elements

• Electron / ion sources

• Diagnostic data analysis

• Others: beam-matter / beam-plasma interactions etc.

▪ Lattice design & choices

▪Guide experiments

▪Probe tolerances of mechanical misalignments, field errors, …

▪Machine tuning & performance optimization

▪Diagnose failures and problems

▪Check theory

▪Discover new phenomena

Uses of Beam Simulations

C. Y. Wong, June 2018 USPAS Accelerator Physics, Slide 3

▪Can fail / misguide when needed physics not included

▪Algorithms can fail when misused

▪Some problems require large computational resources

Limitation of Modeling

C. Y. Wong, June 2018 USPAS Accelerator Physics, Slide 4

▪Envelope codes: beam represented by statistical moments

• Functional form of beam distribution assumed to be unchanged

• Used in rapid machine design / tuning

• E.g. elegant, TRACE3D, MAD-X, TRANSPORT, …

▪Particle codes: beam represented by ensemble of particles
• Can be self-consistent

• Can require large resources, but capable of high detail

• E.g. elegant, Warp, IMPACT, PyORBIT, TRACK, …

▪Some codes can do the work of both
• E.g. elegant, PARMILA, …

Hierarchies of Beam Simulation Codes

C. Y. Wong, June 2018 USPAS Accelerator Physics, Slide 5

▪ Fast

• E.g. FLAME at FRIB front end: each run takes 20 ms!

»Routinely makes thousands of runs to probe errors and optimize

▪Design and tuning

• Orbit correction

• Parameter optimization

• Constraint fitting

▪Usually employs linear optics

▪Many effects not modeled or greatly simplified

• Typically lacks full self-consistency

Envelope Codes – Design & Tuning

C. Y. Wong, June 2018 USPAS Accelerator Physics, Slide 6

Particle Codes – Beam Dynamics Studies

C. Y. Wong, June 2018 USPAS Accelerator Physics, Slide 7

▪Slow (mostly)

▪ Track particles throughout beamline, single- or multi-pass

• Can register where particles are lost

• Dynamic aperture and long-term stability

• Allows detailed comparison with diagnostic measurements

▪Can employ more accurate beamline model

• Import realistic representation of external fields

• Can simulate non-EM elements (collimators, energy degraders, strippers)

▪Can include beam EM radiation effects

▪Can include collective phenomena

• Space charge (beam self-fields)

• Impedances (beam-induced EM fields in accelerator elements)

• Electron clouds (electrons trapped by ion beam potential)

• Beam-beam effects (colliders)

Choosing a Code

▪Code must include needed physics
• Run speed can be an issue

• Obtaining / installing

• Ease of use

▪ Large codes have many options, choices must be made correctly!
• Lattice element models

• Treatment of collective phenomena

• Turning effects on and off

• Numerical algorithms

▪Code should be benchmarked
• Code vs. existing codes on well-established cases

• Code vs. analytic solution or limiting cases

• Code vs. experiments

C. Y. Wong, June 2018 USPAS Accelerator Physics, Slide 8

This Class Uses the Code elegant

C. Y. Wong, June 2018 USPAS Accelerator Physics, Slide 9

▪Developed and maintained by Argonne National Lab (chief architect:
Michael Borland)
• Download: https://www.aps.anl.gov/Accelerator-Operations-

Physics/Software#12345

• Manual: https://ops.aps.anl.gov/manuals/elegant_latest/elegant.html

• Users forum: https://www3.aps.anl.gov/forums/elegant/

▪Suits the needs of our class
• Large range of model options covering what we discuss in the course

• Work as both envelope and particle code

• Freely distributed, multi-platform

• Widely used, handy addition to your toolkit

▪Use free RadiaSoft cloud implementation
• Simplify setup: no installation needed

• Use only browser interface

https://www.aps.anl.gov/Accelerator-Operations-Physics/Software#12345
https://ops.aps.anl.gov/manuals/elegant_latest/elegant.html
https://www3.aps.anl.gov/forums/elegant/

C. Y. Wong, June 2018 USPAS Accelerator Physics

Conventional Installation & Execution

▪Significant effort to install and ensure package compatibility.
• Different for each platform

• E.g. Elegant: https://www.aps.anl.gov/Accelerator-Operations-Physics/Software

▪ Long learning curve to run simulations and process results
• Example commands to run elegant and process results:
» elegant ring.ele

» sddsplot -col=s,betax -col=s,betay par.twi

• Example input files:

, Slide 10

Elegant lattice file

Elegant command file

https://www.aps.anl.gov/Accelerator-Operations-Physics/Software

Cloud Implementation of elegant
Provided Freely by RadiaSoft

C. Y. Wong, June 2018 USPAS Accelerator Physics, Slide 11

▪RadiaSoft: http://radiasoft.net/

▪Code installed on RadiaSoft servers
• Access using HTML5 compatible browser interface

▪ 1) Sirepo
• https://beta.sirepo.com/#/elegant

• More user-friendly setup via GUI

• Post-processing tools readily available

▪ 2) Python wrapper
• Implemented using Jupyter notebook

• Use Python to generate input files and execute runs

• Post-processing with Python graphics tools

http://radiasoft.net/
https://beta.sirepo.com/#/elegant

12D. Bruhwiler – USPAS – January 2018 – Graphical User Interfaces

What does it mean to execute a code “in the cloud”

▪ Cloud computing is a buzzword, and will probably fade in time
• used to be called “client-server”

• then it was called “software as a service” or SaaS

• for a short while, everyone talked about “grid computing”

▪ The physics code is running on a remote “server”
• probably running on Linux, possibly on a cluster or supercomputer

• might be on “bare metal”, such as your institution’s cluster down the hall

• might be running on a commercial cloud provider, like AWS

▪ The UI is your computer browser
• whether you are banking, shopping, or designing a linac

▪ This wasn’t practical 5+ years ago, so what changed?
• the HTML5 standard was adopted by all modern browsers
» the same GUI can now function well in any modern browser on any OS

• the JavaScript language (nothing like Java) emerged as a standard
» many powerful JavaScript libraries and frameworks became available

• browsers have become powerful precompilers for executing code

13D. Bruhwiler – USPAS – January 2018 – Graphical User Interfaces

The Sirepo cloud computing framework

▪ Open source, https://github.com/radiasoft/sirepo

▪ Freely available in open beta, https://sirepo.com

▪ Growing number of codes
• X-ray optics: SRW, Shadow

• Particle accelerators: elegant, Warp (special cases), more on the way

▪ Growing number of users
• independent servers at BNL/NSLS-II, LBNL/ALS and PSI/ETH Zurich

• about 100 users visit the open beta site

https://github.com/radiasoft/sirepo
https://sirepo.com/

▪Compiled code (e.g. FORTRAN, C, C++, etc.) at lower level for fast
computation
• Numerically intensive operations (e.g. particle movers, filed solvers)

▪Scripting language (e.g. Python) at upper level for ease of organization
• Beamline setup

• Run configuration

• Diagnostics

▪Allows flexible use of code

▪We will use a “light” 2-level model
• Python scripts to setup elegant runs

• Python scripts to process results

Two-level Structure:
Compiled Code Linked to Flexible Interpreter

C. Y. Wong, June 2018 USPAS Accelerator Physics, Slide 14

Why Python?

C. Y. Wong, June 2018 USPAS Accelerator Physics, Slide 15

▪Easy to read and learn

▪ Fully object-oriented design

▪Open-source, with huge and supportive community

▪Numerous packages to extend core Python
• Numpy: manipulation of numerical arrays

• Scipy: scientific computation

• MatPlotLib: plotting

• Pandas: data analysis

• Many more

▪ Integration with compiled languages
• C / C++ most natural

• FORTRAN possible

▪ Tools to develop graphical user interfaces readily available
• E.g. PyQt, wxPython, PyGUI, …

▪Create Github account if you do not have one

▪Sign in to JupyterHub on Radiasoft: https://uspas-jupyter.radiasoft.org/

RadiaSoft JupyterHub

C. Y. Wong, June 2018 USPAS Accelerator Physics, Slide 16

https://uspas-jupyter.radiasoft.org/

• Terminal is bourne shell using standard UNIX commands for file
manipulations

▪ First time: clone github repository
>>> git clone https://github.com/YueHao/USPAS_AP_ComputerLab.git

• Generates directory USPAS_AP_ComputerLab containing course
examples / exercise

▪Recommends updating files using git before each exercise (see next
slide)

Utilizing Git (First Time)

C. Y. Wong, June 2018 USPAS Accelerator Physics, Slide 17

▪Open terminal:

https://github.com/YueHao/USPAS_AP_ComputerLab.git

Utilizing Git for Updates

C. Y. Wong, June 2018 USPAS Accelerator Physics, Slide 18

▪Obtain updates from github repository:
• Go to directory USPAS_AP_ComputerLab

>>> git pull

• If you have modified the files, git pull may see a conflict

• Use these commands (may wipe out local changes, backup if necessary)

>>> git fetch --all

>>> git reset --hard origin/master

▪Advise: copy files out of USPAS_AP_ComputerLab and work there
• Example: create directory “LabExercise” and copy “IntroPython.ipynb” there

Advice on Avoiding Merge Conflicts

C. Y. Wong, June 2018 USPAS Accelerator Physics, Slide 19

▪Copy files from USPAS_AP_ComputerLab to a new directory
LabExercise
• Example: create directory “LabExercise” and copy “IntroPython.ipynb” there

▪Work in LabExercise directory

Python & Jupyter Notebook Tutorial

C. Y. Wong, June 2018 USPAS Accelerator Physics, Slide 20

▪Open “IntroPython.ipynb”

References

C. Y. Wong, June 2018 USPAS Accelerator Physics, Slide 21

▪ Aseev, V. N., Ostroumov, P. N., Lessner, E. S., & Mustapha, B. (2005, May). TRACK: The new
beam dynamics code. In Particle Accelerator Conference, 2005. PAC 2005. Proceedings of the
(pp. 2053-2055). IEEE.

▪ Franchi, A., Duperrier, R., Franchetti, G., Gerigk, F., Groening, L., Hofmann, I., ... &
Yaramyschev, S. (2005, June). Benchmarking linac codes for the HIPPI project. In AIP
Conference Proceedings (Vol. 773, No. 1, pp. 110-113). AIP.

▪ Shishlo, A., Cousineau, S., Holmes, J., & Gorlov, T. (2015). The particle accelerator simulation
code PyORBIT. Procedia Computer Science, 51, 1272-1281.

▪ Zhang, T., Liu, B., Chen, J., & Wang, D. (2016). Python-based high-level applications
development for Shanghai soft X-ray free-electron laser.

▪ Cary, J. R., Abell, D. T., Bell, G. I., Cowan, B. M., King, J. R., Meiser, D., ... & Werner, G. R.
(2016). Select advances in computational accelerator physics. IEEE Transactions on Nuclear
Science, 63(2), 823-841.

▪ Rakitin, M. S., Chubar, O., Moeller, P., Nagler, R., & Bruhwiler, D. L. (2017, August). Sirepo: a
web-based interface for physical optics simulations-its deployment and use at NSLS-II. In
Advances in Computational Methods for X-Ray Optics IV (Vol. 10388, p. 103880R).
International Society for Optics and Photonics.

▪ He, Z., Davidsaver, M., Fukushima, K., Maxwell, D., Shen, G., Zhang, Y., & Zhao, Q. (2017,
May). Development Status of FRIB On-line Model Based Beam Commissioning Application. In
28th Linear Accelerator Conf.(LINAC'16), East Lansing, MI, USA, 25-30 September 2016 (pp.
100-103). JACOW, Geneva, Switzerland.

