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S1: Overview

Analyze transverse centroid and envelope properties of an unbunched (9/0z = 0)
beam
y

rp = pipe radius y Expect for linearly focused

Tmage Charges
Beam

Aperture /(g 0] + Beam to look roughly
v elliptical in shape
v + Nearly uniform density
- X > within fairly sharp edge
/
/

Transverse averages:

_ &Pz, [ - f)
Centroid: = (o= Jd?x, [d?a') fi
X = ()1 x- and y-coordinates
Y= of beam “center of mass”

Envelope: (edge measure)
e =2v/((z — X)?)1
ry =2 ((y-Y)*)L
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Aperture Center

x- and y-principal axis radii
of an elliptical beam envelope

+ Apply to general f1 butbase on uniform density fi
# Factor of 2 results from dimensionality (diff 1D and 3D)
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beam with intense space-charge:

Apply the definition of - ius in x: N
pply the definition of mean-square radius in x Beam distribution

[d2a’ fdQ:r (r — X)2f1 function:

(fe = X))s = e

fi=fi(zy, 2 y;s)

Take norm:

n(x,y;s) = /de’ f1 = Density
Then:
[P [dPx(x— X)L
B Ja?x" [dPx fo

For a uniform density elliptical beam:

_ [d?z (z — X)?n

(o= X)) T

n—{ f = const, if (x —X)?/r2+(y—-Y)?/r2<1
if (x —

0, if (- X)?/r2 + (y — Y)2/rs > 1
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Transform the elliptical region within the beam to a unit sphere to more
easily carry out the integration in the mean-square radius:

d*z = dedy = ryr,ndndy
r—X =ryncosy v

— T 1
y—Y =rynsiny / d2x---:rzry/ dw/ dmm -
ellipse - 0

Giving:
d*r (z — X)n
e
(o= xp) = 1
iwgry [T dipcos?y [idmmn? 2
o ATT 3Ty T4

and similar in y to show that:

re = 2v/((x = X)?) L

ry =2V = YP)
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/lAside: Edge Radius Measures and Dimension

The coefficient of rms edge measures of “radii” of a uniform density beam
depends on dimension:

1D: Uniform Sheet Beam:

+ For accelerator equivalent model details see:
Lund, Friedman, Bazouin PRSTAB 14, 054201 (2011)

Tyiatn = V3(2)1/?
2D: Uniform Elliptical Cross-Section:
+ See homework problems

Ty = 2(552)1/ 2

ry =202

3D: Uniformly Filled Ellipsoid:
+ See JJ Barnard Lectures on a mismatched ellipsoidal bunch and

and Barnard and Lund, PAC 9VO18 (1997) o1/o
Axisymmetric Transverse Tz = \/5@ ) /
ri=V5/Aa% + 7)1 3D |y = V()2
r, = V5(z2)1/? r, = V5(z%)1/?
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General case uniform density beam:
* For dimension d, the coordinate average along the j = x, y, z

rj =V2+d{E) .
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Oscillations in the statistical beam centroid and envelope radii are the
lowest-order collective responses of the beam

Centroid Oscillations: Associated with errors and are suppressed to the extent
possible:
# Error Sources seeding/driving oscillations:
- Beam distribution assymetries (even emerging from injector: born offset)
- Dipole bending terms from imperfect applied field optics
- Dipole bending terms from imperfect mechanical alignment
+ Exception: Large centroid oscillations desired when the beam is kicked (insertion or
extraction) into or out of a transport channel as is done in beam insertion/extraction
in/out of rings

Envelope Oscillations: Can have two components in periodic focusing lattices

1) Matched Envelope: Periodic “flutter” synchronized to period of focusing lattice to
maintain best radial confinement of the beam
+ Properly tuned flutter essential in Alternating Gradient quadrupole lattices

2) Mismatched Envelope: Excursions deviate from matched flutter motion and are
seeded/driven by errors
Limiting maximum beam-edge excursions is desired for economical transport

- Reduces cost by Limiting material volume needed to transport an intense beam
- Reduces generation of halo and associated particle loses
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Mismatched beams have larger envelope excursions and have more collective
stability and beam halo problems since mismatch adds another source of free
energy that can drive statistical increases in particle amplitudes

Example: FODO Quadrupole Transport Channel

o Envelope Solution: Matched and Mismatched Beam
—— T T

H — MisMatched Beam (Dashed)
H i

i1 Black: x—envelope
f Red: y-envelope
Green: x—focusing

X,Y Envelopes (mm)

; \ Y v 3 ,"
r \ Matched Beam (Solid)

10+ -
s

0 5 10 15
Axial Coordinate, s (m)
+ Larger machine aperture is needed to confine a mismatched beam
- Even in absence of beam halo and other mismatch driven “instabilities”
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Centroid and Envelope oscillations are the most important collective modes of an
intense beam

+Force balances based on matched beam envelope equation predict scaling of
transportable beam parameters
- Used to design transport lattices
+Instabilities in beam centroid and/or envelope oscillations can prevent reliable

transport
- Parameter locations of instability regions should be understood and avoided in

machine design/operation

Although it is necessary to avoid envelope and centroid instabilities in designs, it
is not alone sufficient for effective machine operation

+Higher-order kinetic and fluid instabilities not expressed in the low-order
envelope models can can degrade beam quality and control and must also be

evaluated
- see: USPAS lectures on Beam Physics with Intense Space-Charge
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S2: Derivation of Transverse Centroid and Envelope Equations of Motion

Analyze centroid and envelope properties of an unbunched (9/0z =0) beam
Transverse Statistical Averages:

Let N be the number of partlcles in a thin axial slice of the beam at axial
coordinate s.

Axial Coordinate, z

\_/\

Thin 31|ce. N >> 1 Particles
Averages can be equivalently defined in terms of the discreet particles making up
the beam or the continuous model transverse Vlasov distribution function:

X
particles: ()L = N Z

=1 lslice
o _ [dPxy [dPa - L
distribution: ~ {---)1L = fdQ:cl fdQJ’JL fi

# Averages can be generalized to include axial momentum spread
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Transverse Particle Equations of Motion

Consistent with earlier analysis [lectures on Transverse Particle Dynamics], take:

"y (’Ybﬁb)/x/ + KT = q 8¢
(78) T mp R O Assumgi hed b
9 + Unbunched beam
"4 () Sy 4k RyY = d — 35 ¢ + No axial momentum spread
(765) m’yb s e oy + Linear applied focusing fields
o? 32 described by Kz, Ky
2
Vig= <w +o5)0=— € + Possible acceleration: v,/
5 need not be constant
pP= Q/d T fl ¢|aperture =0

Various apertures are possible influence solution for @ . Some simple examples:

Round Pipe Elliptical Pipe Hyperbolic Sections

In rings with dispersion:
in drifts, magnetic optics, ....

Linac magnetic quadrupoles,

. Electric quadrupoles
acceleration cells, .... q P
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Review: Focusing lattices we will take in examples: Continuous and
piecewise constant periodic solenoid and quadrupole doublet

a) Continuous

0] (X, =K =k, =const) Lattice Period L,
Ko
- Occupa(r)lcil 7
b) Periodic Solenoid n € [0,1]
Ky(s) (ry=%) A
K
Solenoid description
carried out implicitly in
. Larmor frame
ar nL, a2 dne [see: S.M. Lund lectures on
- d=(1-n)L, Transverse Particle Dynamics]
c) Periodic Quadrupole Doublet
K,(5) (K, =1) A )
% Syncopation Factor «
dy L2, d
F Quad N 1
D Quad s a € [0, 5]
-~
NL,/2
,{gq . 1
L, dy=o(l-n)L, o = 5 — FODO
Lattice Period dy=(1-0)(1-n)L,
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Distribution Assumptions

To lowest order, due to Debye screening to applied focusing forces, linearly
focused intense beams are expected to be nearly uniform in density within the core
of the beam out to an spatial edge where the density falls rapidly to zero

Charge conservation requires:
A = const

Uniform density within beam:
A

TTxTy

p:

_ / L s @ X i+ (y Y)Yy <1
poy) _q/dzﬂ fi _{ 0, (:r—X)Q/rﬁJr(y—Y)Q/T% >1

A:q/del/de'J_fl :/d%p = const

Accelerator Physics
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Comments:
+Nearly uniform density out to a sharp spatial beam edge expected for near
equilibrium structure beam with strong space-charge due to Debye screening
- See: USPAS course on Beam Physics with Intense Space-Charge
+Simulations support that uniform density model is a good approximation for
stable non-equilibrium beams when space-charge is high
- Variety of initial distributions launched and, where stable, rapidly relax
to a fairly uniform charge density core
- Low order core oscillations may persist with little problem evident
- See: USPAS course on Beam Physics with Intense Space-Charge
+ Assumption of a fixed form of distribution essentially closes the infinite
hierarchy of moments that are needed to describe a general beam distribution
- Need only describe shape/edge and center for uniform density beam to fully
specify the distribution
- Analogous to closures of fluid theories using assumed equations of state etc.
- Obviously miss much of physics of true collective response where space charge
waves are likely to be launched.
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Self-Field Calculation

Temporarily, we will consider an arbitrary beam charge distribution within an
arbitrary aperture to formulate the problem.

Electrostatic field of a line charge in free-space
Ao = line charge

E, — Ao (x1 —X%)

27 |x1 — X[? X1 =X = coordinate of charge

Resolve the field of the beam into direct (free space) and image terms:

s 09 4 i and superimpose free-space
El =——-—=E] +E| . . . _
0% solutions for direct and image contributions
Direct Field
1 _opEL)(xL —%1) beam char
El(x,) = 4%z _ x,) = gc
() 2meg / + |x; — % |2 plxs) density

Image Field

) 1 p
E| = a3

1 () 2meg / o

) beam image charge
p(xL) = density induced
on aperture

(R (%L —%1)
lxp — % |?
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/I Aside: 2D Field of Line-Charges in Free-Space
5
p(r) =\ () )\:/dzxp

= o

VL-E:E
€0

Line charge at origin, apply Gauss' Law to obtain the field as a function of the
radial coordinate r :

A

" 2meor

E, = iE,

For a line charge at x| = X , shift coordinates and employ vector notation:

EJ_ )\ Xl—f‘(L

- 2mep |x1L — X1 |?

Use this and linear superposition for the field due to direct and image charges
+ Metallic aperture replaced by collection of images external to the aperture in
free-space to calculate consistent fields interior to the aperture

.y XL —X)
dr) p(x)) ————
/ ( )|X¢—XL\2

E, =
+ 2meg

1
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Comment on Image Fields

Actual charges on the conducting aperture are induced on a thin (surface charge
density) layer on the inner aperture surface. In the method of images, these are
replaced by a distribution of charges outside the aperture in vacuum that meet the
conducting aperture boundary conditions

+ Field within aperture can be calculated using the images in vacuum

+ Induced charges on the inner aperture often called “image charges”

+ Magnitude of induced charge on aperture is equal to beam charge and the

total charge of the images

Physical Images

+ No pipe
# Schematic only (really continuous image dist)

18
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Direct Field:

// Aside: Assume a uniform density elliptical beam in a periodic focusing lattice

The direct field solution for an umbunched uniform density beam y .
in free-space can can be solved analytically Elliptical Line-Charge:
- See: USPAS lectures on Beam Physics with Intense Space-Charge Beam 7y A = qn(s)mry(s)ry(s)
v 4 ! = const  (charge conservation)
number Pox .
density n i Bean21 Edge: 9
Y u V=1 (ellipse)
"""""""""" Uniform density in beam: - - YA YA cllipse
y ry | r2(s)  r2(s)
P= const Free-space self-field solution within the beam (see USPAS: Beam Physics with
vy Intense Space Charge) is:
+ This is a non-trivial solution: originally derived in Astrophysics in Classical
X z gravitational models of stars with ellipsoidal density profiles
A x? 2
¢ =— i + const
TN X 2meg | (ry +1y)re  (re +1y)Ty
E _ . . . .
* = Te —(T‘z )T Expres'sm'ns are Vé.illd only within o6 A T
the elliptical density beam -- where Tor  rmen . .
d A y—Y . .. . r  meo (1o + Ty)Tz valid only within the beam!
E¢=_Z - they will be applied in taking averages - . .
Y e (g +1y)Ty O¢ B A Yy + Nonlinear outside beam
0y  meg (rg +1y)1y //
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Image Field:

Image structure depends on the aperture. Assume a round pipe

(most common case) for simplicity.

» = )\I
Xy

>

X

¢(r =rp) = const

X7 =

=—X image charge
2 ,
T zXo image location
[0l
Will be derived in the

the problem sets.

Superimpose all images of beam to obtain the image contribution in aperture:

Ei(x.) =~

A
2mep

1 / P20 p(XL)(xL —roxy /|%0[?)
pipe |XJ- - T%iJ./|5(J.|2|2

# Difficult to calculate even for P corresponding to a uniform density beam

Examine limits of the image field to build intuition on the range of properties:
1) Line charge along x-axis:

Y No loss in generality:
Can always choose coordinates to

make charge lie on axis ; ;
& AYox —x)

E| = ——L
A L7 21 [x — X ?
X )z A= -\
Tp . )
p(x1) = M(x — XX) . Th
XJ_ = Y

Plug this density in the image charge expression for a round-pipe aperture:
+ Need only evaluate at x| = XX since beam is at that location

A %
)

E’ =Xx)=— -
1 (xs %) 2mep(r2/X — X

+ Generates nonlinear field at position of direct charge
+ Field creates attractive force between direct and image charge
- Therefore image charge should be expected to “drag” centroid further off
- Amplitude of centroid oscillations expected to increase if not corrected (steering)
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2) Centered, uniform density elliptical beam: 3) Uniform density elliptical beam with a small displacement along the x-axis:
V=0 [ X|/rp <1
A 2/,.2 27,2
Tror.? z/7‘a:-+_y/ry<1
plxL) = o 27,2 4 2/.2
0, x?frg +y? ry > 1

Expand using complex coordinates starting from the general image expression:
+ Image field is in vacuum aperture so complex methods help calculation
+ Follow procedures in Multipole Models of applied focusing fields

oo

B — F _iE — n—1 o =t 2, p(xL)M
= z v Yy Z Qng - 27T€U pipe TIZJn
n=24,--- n/2
2 2
. . B An! e Ty
z=rtwy di=v-1 = Zre2 (2 + )i/ \ 7
The linear (n = 2) components of this expansion give:
2 _ 2 2 _ 2
o ATTn o Ao
T 8mey Th Y 8meg 15

+ Rapidly vanish (higher order n terms more rapidly) as beam becomes more round

+ Case will be analyzed further in the problem sets

SM Lund, USPAS 2018 Acceler.
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Expand using complex coordinates starting from the general image expression:
+ Complex coordinates help simplify very messy calculation
E.P. Lee, E. Close, and L. Smith, Nuclear Instruments and Methods, 1126 (1987)
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Leading order terms expanded in | X|/7p without assuming small ellipticity obtain:

. A x\?
i — (r—X X =
T 271'607'% [f (‘T )+g ]+® (rp)
; A x\*

S ke

Where f and g are focusing and bending coefficients that can be calculated in terms of
X, 7, 7y (whichall may vary in s) as:

FocusingTerm:
2
f:rg—rg_i_ﬁ 1+§ ri—rs +§ ri—rg
4r? r2 2 2 8 r2

BendingTerm:

2
22 x2 3 (12— g2 1 /22
Ty AT S (e Ty ) LTy
g + 4r2 * 2 * 4 r2 * 8 72

+ Expressions become even more complicated with simultaneous x- and y-
displacements and more complicated aperture geometries !

+ f quickly become weaker as the beam becomes more round and/or for a larger pipe

+ Similar comments apply to g other than it has a term that remains for a round beam
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Comments on images:

+Sign is generally such that it will tend to increase beam centroid displacements
- Also (usually) weak linear focusing corrections for an elliptical beam
+Can be very difficult to calculate explicitly
- Even for simple case of circular pipe
- Special cases of simple geometry and case formulas help clarify scaling
- Generally suppress by making the beam small relative to characteristic
aperture dimensions and keeping the beam steered near-axis
- Simulations typically applied
+Depend strongly on the aperture geometry
- Generally varies as a function of s in the machine aperture due to changes in
accelerator lattice elements and/or as beam symmetries evolve

Round Pipe

Elliptical Pipe

Hyperbolic Sections
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Coupled centroid and envelope equations of motion for a
uniform density elliptical beam

Consistent with the assumed structure of the distribution
(uniform density elliptical beam), denote:
Beam Centroid: (phase-space)

X=@. X =(@) !
Y =(y)L Y'=(y)L !
Coordinates with respect to centroid: vl
T=x—-X =2 -X v

:y—Y g’:y/—Y/

<

Envelope Edge Radii: (phase-space)
re = 20/(@%) vl =20F), /(@)
ry =2/ @) =207/
With the assumed uniform elliptical beam, all moments can be calculated

. / /
intermsof: X, X’ Y)Y’ Tay Ty Ty, Ty

+ Such truncations follow when the form of the distribution is “frozen”
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Derive 2™ order equations of motion to describe the evolution of the beam
centroid and envelope.
+ Derive by taking averages over the equations of motion while applying the
assumed (uniform density) form of the beam distribution
+ Cast equations of motion in a form that allows easy interpretation
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Derive centroid equations: First use the self-field resolution for a uniform density
beam, then the equations of motion for a particle within the beam are:

Perveance: gqA . .
= 3,55 (notnecessarily constant if beam accelerates)
2megmry;, By ¢

average equations using: (I/> 1= <$)l =X’ etc., to obtain:

Centroid Equations: (see derivation steps next slide) Note: the electric image

9 field will cancel the
X// ((Wbﬁﬂb)) X/ +r X Q |: TEQ <E;>L:| coefficient 271’60/)\
Yo . . -
) 1 o _
l/ (’Ybﬁb) ’ 271'60 Ei = 2— /dQﬁL'J. %
T R = %%
o
* <E;>J_ will generally depend on: X, Y and 7z, Ty
29
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1) Derivation of centroid equations of motion
Start with particle equation of motion:

! 0
"y (763) ' + kgx = q T ¢
(765) m’Yb b Bhe o
Use (valid within beam): Direct Image
A - X -
90 A 2= X g
Or ey (rg +1y)Ts
' 2Q q ;
2+ QED) 2tk — ————— (2 — X)) = ——5—=F"
() ot~ T e
Perveance: Image Field: A
B W;llﬁ%pﬂmmfm
27reom’y3ﬂb c? L7 27e + [xL — % |2
Giving (valid within beam):
- R ——— (2 —X) =
(’Ybﬂb) T (et ry)re ( ) - mB myp BEc?
(wB) 2Q g i
YV'+ 5y ARy - ———— W -Y) = —5 53
o T G,V = e
Direct Terms Image Terms
30
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Equation of motion:

(%ﬂb)/x' + Kp — e (r—X)= —L

(/) ¢ (rz +1y)70 m; B} mys B3c?

Take average of equation of motion pulling through terms that depend on on s:
fdsz_ [dZ o fy

/l+

Vo= Jd?zy fd% fr
" ('Ybﬁb)l / _ 2Q — q
<'T >J_+<(’Yb,8b)x>L+<sz>l <(Tz+ry)rz( X)>J- <m,yb/3202 >
" (Vbﬁb)/ ’ 2Q
(x)'[ + (0B0) (@)1 + Ko (T) 1 — m@f -X)1
_ g 2meg i
g |
Perveance: " —Q [27“0} (B,

= 27reom7 B2c?
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(78)

@+ gy s+ Rale)s = = X
—o| 52| e
Use:
X =({x). X' =(a'),
r—X),=X-X=0
(5s) s |:27T50 . ]
— X"+ (%ﬁb)X +rX =0Q (Eo)L
+ Analogous equation obtained in y-plane
(Bb)" [27760 i }
X" +(%6)X+ e X = Q (Ep)v
(Vbﬂb) / [ i :|
i ) PRV kY = Q | (B
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2) Derivation of envelope equation of motion
To derive equations of motion for the envelope radii, ., 7, 1* subtract the

Next, differentiate the equation for the envelope radius twice:

centroid equations from the particle equations of motion: oa2\1/2
e = 2(Z%) /
Particle equation:
w o, (wB) 2Q q 2EF),  AET)
+ ——2 + R — ————(x— X st derivative: 1. — —
(765) ’ (re +1y)re ( )= my; By mapBRc? = 1M derivative: (32 1/2 T
) [ r
Subtract centroid equation:
2 ) N .. 202z, 202y, 2(zr)?
"+ ((%%)) X'+ 5, X=0Q { <0 (E;)L] 2" derivative: 1) = <~2 132 <~2 1>/2 - <~2 3>/§
o (@)} (%) (@)Y
Giving: F=r—X <53~7H>J_ 16 [<52>L<57/2>L - <3~3jl>3_]
- - ~o\1/2 ~o\1/2
¥ X [2(2))] [2(2) )%
(5b)’ 2Qi o _ 16 [(@) (@), — (@) ]
B4 L 4 i — — L [Ei—(Ei)] =4 3
(768p) (ra +ry)ra My Bic ’ v
o (wB) 2Qy q i i
P Y T G~ e B (]
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Define a statistical rms edge emittance: / 20(72
@0+ P iy gy, - UL
(763) (rz +ry)Ts
- - ~n211/2 o o
E0 = A2y s = 4 [(2), (#2)) — (3)2]" — L [(@EL). — (#(EL)).]
But: may e
Then we have: 0
@16 (@), — ) (T(EL))1 = /ﬂng@l =0
T Ty r3
_ 4@57/%_ . é Giving
Tz e ol (86" 750 - 2Q(2%) 1 i
(F2") L+ Gy )1+ he(@) L — G505 = e (TELL
and employ the equations of motion to eliminate " in(#Z”), with steps below , 2
(FF") | + (Be) Tt +x _ Qre/2 (ZEL),
Using the equation of motion: wfe) 4 T4 ety m’y3’3 he
- Using this moment in the equation for -/
~ ! ~ ~ 2Qx . . T
'+ ('Vbﬁb) P+ Kpd — Q — 3(] 5 [E; — (E;)L] (@) &2
(f)/bﬂb) (rm + ry)rx m’)/bﬁbc I'g = 4,,.—L + r—é
Multiply the equation by I, average, and pull s-varying coefficients and constants then gives the envelope equation with the image charge couplings as:
36
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through the average terms to obtain
35
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Envelope Equations:

" ('Vb[))b)/ ’ 2Q E?c [7760 JU— ]
-— - = = =8Q | —(zF
T, + (o) Ty + Kgls rtry, 13 Q ) (ZE.)L
7" (’Ybﬂb)l , 2Q 512; [7760 i ]
e A 0 uE
v (78) Tzt YTy re Ty TS 8Q A (GEy ).

+ (#E') | will generally depend on: X, Y and Tz, Ty
Comments on Centroid/Envelope equations:
+Centroid and envelope equations are coupled and must be solved
simultaneously when image terms on the RHS cannot be neglected
+Image terms contain nonlinear terms that can be difficult to evaluate explicitly
- Aperture geometry changes image correction
+The formulation is not self-consistent because a frozen form (uniform density)
charge profile is assumed
- Uniform density choice motivated by KV results and Debye screening
see: USPAS, lectures on Beam Physics with Intense Space-Charge
- The assumed distribution form not evolving represents a fluid model closure
- Typically find with simulations that uniform density frozen form distribution

models can provide reasonably accurate approximate models for centroid and
envelope evolution
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Comments on Centroid/Envelope equations (Continued):
+Constant (normalized when accelerating) emittances are generally assumed
- For strong space charge emittance terms small and limited emittance
evolution does not strongly influence evolution outside of final focus

Bos Yo, A s-variation set by acceleration schedule

Enz = VpPpEs = const

—> used to calculate €z, €y
Eny = VbPrey = const

_ A
- 2mmegyp BEc?
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Interpretation of the dimensionless perveance Q
The dimensionless perveance:

_ g\ A = ghmryr, = line-charge = const
S V——: s
2megmoy, By 2 7, = beam density

+ Scales with size of beam (' A ), but typically has small characteristic values
even for beams with high space charge intensity ( ~ 10 *to 10®* common)

+ Even small values of Q can matter depending on the relative strength of other
effects from applied focusing forces, thermal defocusing, etc.

Can be expressed equivalently in several ways:
Q- qA B qly 2 ﬁ
(V) 1a

2reomp BEc? 2meomyp BPcd

I, = A\Byc = beam current

2 ~ ~2
WATr,T.
_ 9T 297; — 1; x2 Y 14 = dwegmc® /q = Alfven current
2meoma; Bpcd 2y Brc?

Wp = V¢?>n/(mey) = plasma freq.

+Forms based on A, I, generalize to nonuniform density beams
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To better understand the perveance Q, consider a round, uniform density beam with
Ty =Ty =Ty

then the solution for the potential within the beam reduces:

A 22 Y2
¢ =— + + const
2mey | (rg +1y)re (ra+1y)ry
AT + t
= ———— 4 cons
4meq rf
A .
= Ad=o¢(r=0)—d(r=rp) for potential drop

across the beam
If the beam is also nonrelativistic, then the axial kinetic energy &p is

4dmeg

1
& = (w— 1)me® ~ §m5502

and the perveance can be alternatively expressed as

_ gA A
T 2meomp B T &

+ Perveance can be interpreted as space-charge potential energy difference
across beam relative to the axial kinetic energy

SM Lund, USPAS 2018 Accelerator Physics 40




S3: Centroid Equations of Motion
Single Particle Limit: Oscillation and Stability Properties

Neglect image charge terms, then the centroid equation of motion becomes:

" (’YbBb)/ ’ _
+ (’Ybﬁb)X + kX =0

(wBs)' 1 _
(EERL (050) —=Y ' +K,Y =0

+Usual Hill's equation with acceleration term

+Single particle form. Apply results from S.M. Lund lectures on Transverse Particle
Dynamics: phase amplitude methods, Courant-Snyder invariants, and stability
bounds, ...

Assume that applied lattice focusing is tuned for constant phase advances with
normalized coordinates (effective Kz, Ky ) and/or that acceleration is weak and
can be neglected. Then single particle stability results give immediately:

1
§|Tr M, (s; + Lplsi)| < 1

/Il Example: FODO channel centroid evolution for a coasting beam

_ lattice/beam
Mid-drift i ¥ parameters:
launch: . : 58y = const
X(0) = 0mm 1 00z = 80°
X'(0) = 1 mrad © z Lp =05m
. .
EXERSFEEREFEETEY R Y

0 2 4 6 8 10 12 14 16
s/L,, Lattice Periods

+ Centroid exhibits expected characteristic stable betatron oscillations
- Stable so oscillation amplitude does not grow
- Courant-Snyder invariant (i.e, initial centroid phase-space area set by
initial conditions) and betatron function can be used to bound oscillation
+ Motion in y-plane analogous

"

Designing a lattice for single particle stability by limiting undepressed

00 < 180° centroid stability phases advances to less that 180 degrees per period means that the centroid
1 — oo, < 180° 1 stability condition will be stable
—|TI' My(sz+Lp|Sz)| < 1 Oy . . . . . .
2 + Situation could be modified in very extreme cases due to image couplings
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Effect of Driving Errors Errors will result in a characteristic random walk increase in oscillation amplitude

The reference orbit is ideally tuned for zero centroid excursions. But there will
always be driving errors that can cause the centroid oscillations to accumulate
with beam propagation distance'

Z ~ /{n acn

X" + (v3)’ X/
+ Z ar
Z kn(s)  #n(s) nominal gradient function, nth quadrupole

(7)

G nth quadrupole gradient error (unity for no error; s-varying)
0

Ay, = nth quadrupole transverse displacement error (s-varying)
/Il Example: FODO channel centroid with quadrupole displacement errors

15
Gu_, .
Go g
= s . .
Ayn = [—0.5,0.5] mm ; v solid — with errors
(uniform dist) ~ ° dashed — no errors
same lattice and &
o s,a0 . 10
initial condition

as previous 0 10 20 30 40 50
s/L,, Lattice Periods 1/

SM Lund, USPAS 2018 Accelerator Physics

due to the (generally random) driving terms
+ Can also be systematic errors with different (not random walk) characteristics
depending on the nature of the errors

Control by:
+ Synthesize small applied dipole fields to regularly steer the centroid back on-axis
to the reference trajectory: X=0=Y, X'=0=Y'
+ Fabricate and align focusing elements with higher precision
+ Employ a sufficiently large aperture to contain the oscillations and limit
detrimental nonlinear image charge effects (analysis to come)

Economics dictates the optimal strategy
- Usually sufficient control achieved by a combination of methods

44
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Effects of Image Charges

Model the beam as a displaced line-charge in a circular aperture. Then using the
previously derived image charge field, the equations of motion reduce to:

X"+ (706)" AP X 4k, X = QiX examine oscillation
(768) Tp - X? along x-axis
X .
Qixg ~ % X+ % X3
B Ty Tp
linear correction / \ Nonlinear correction (smaller)

3

Example: FODO channel centroid with image charge corrections

rp = 30 mm
Q=2x10""* solid — with images

dashed — no images

Centroid X [mm]

same lattice
as previous

s/ Ly, Lattice Periods

Main effect of images is typically an accumulated phase error of the centroid orbit
* This will complicate extrapolations of errors over many lattice periods

Control by:
# Keeping centroid displacements X, Y small by correcting
# Make aperture (pipe radius 7p ) larger

Comments:
+Images contributions to centroid excursions typically less problematic than
misalignment errors in focusing elements
#*More detailed analysis show that the coupling of the envelope radii 7z, 7y to the
centroid evolution in X, Y is often weak
+ Fringe fields are more important for accurate calculation of centroid orbits since
orbits are not part of a matched lattice
- Single orbit vs a bundle of orbits, so more sensitive to the timing of
focusing impulses imparted by the lattice
+ Over long path lengths many nonlinear terms can also influence oscillation phase
« Lattice errors are not typically known a priori so one must often analyze characteristic
error distributions to see if centroids measured are consistent with expectations
- Often model a uniform distribution of errors or Gaussian with cutoff tails since
quality checks should render the tails of the Gaussian inconceivable to realize
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S4: Envelope Equations of Motion KV/rms Envelope Equations: Properties of Terms
Overview: Reduce equations of motion for 7, Ty The envelope equation reflects low-order force balances:
+Find that couplings to centroid coordinates X Y are weak ‘ ; 9 ‘ 2
o . 1 ('Ybﬁb) ! ! i | Q ! €z
- Centroid ideally zero in a well tuned system Ty + Kyt — ——— = 3 = 0
+Envelope eqns are most important in designing transverse focusing systems (%B b) f 1 }rz Ty e
- Expresses average radial force balance (see following discussion) 1"" (’ybﬂb) r’ " Ryr L 2Q L i ~0
- Can be difficult to analyze analytically for scaling properties y (’Yb By) ¥ vy ety ‘ 3
- “Systems” or design scoping codes often written using envelope equations, Y
stability criteria, and practical engineering constraints ] Applied Apphed Space-Charge ~ Thermal
+Instabilities of the envelope equations in periodic focusing lattices must be Streaming Acceleration ~ Focusing ~ Defocusing ~ Defocusing
avoided in machine operation Terms: Inertial Lattice Lattice Perveance Emittance
- In.stabilities are strong and real: not washed out with realistic distributions The “acceleration schedule” specifies both 73 and A
without frozen form then the equations are integrated with:
- Represent lowest order “KV”” modes of a full kinetic theory q g ’
*Prewpus d§r1¥at10n of i:p\(;elolée e?fu?tli)(;ls rzhe? 01.1 CgurantilSnyl(lier Yo BpEx = const normalized emittance conservation
1nvariants 1n linear applie arll self- 1.e .s. na y51s.s ows.t at the sanlle Y ﬁbey = const (set by initial value)
force balances result for a uniform elliptical beam with no image couplings.
- Debye screening arguments suggest assumed uniform density model taken g\
should be a good approximation for intense space-charge W specified perveance
47 48
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As the beam expands, perveance term will eventually dominate emittance term:
[see: Lund and Bukh, PRSTAB 7, 024801 (2004)]

Consider a free expansion (% = #y = 0) for a coasting beam with v,/3, = const

For an emittance dominated beam in free-space, the envelope equation becomes:

Q €5 "
J

<<ﬂ — J:%Z/

Initial conditions: Cases: Tz Ty T2y
r(si) = T‘y(Si) Q g2 Space-Charge Dominated: £, = 0 The envelope Hamiltonian gives:
N r3(ss 2
’ / Tz(S ro(s : : . — g4
7, (si) =7, (s;) =0 «(s4) 2 2(s:) Emittance ~ Dominated: @ =0 L + - = const
Q=—-2-=10"3 27 23
2(s. . . L
r3(si) which can be integrated from the initial envelope at s = s; to show that:
3.0
. o . . ] . _
. . (s)r (s.) See next page: solution is Emittance Dominated Free-Expansion (Q = 0)
x . . . 2 2 2
o . » analytical in bounding 21 (s;) r2(s;)r2(s;) 2
o IS)pac‘e Ch:rge limits shown ri(s) = ri(si)y| 1+ . (s—si)+ |1+ . 2] 1 : (s —si)?
g 20 ominate ] Tj (Sz) €5 r; (52)
§ ' ($)/r.(s;) Parameters are chosen such J=z,y
r.($)/r.(s; L .
H 1.5 * o that ml‘”al def(.)a.lsmg Conversely, for a space-charge dominated beam in free-space, the
. forces in two limits are .
Emittance envelope equation becomes:
Dominated equal to compare case ) " Q
10 Q EE»?J T+_r_:0 _1
00 01 02 03 04 05 e s = + re =5 £1y)
. . z Y z,y "o __ 0
Axial Coordinate, s—s;, (m) r_ =
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The equations of motion

rl——zO
T+
=0

can be integrated from the initial envelope at s = s; to show that:
+ T— equation solution trivial

. . . |
+ T+ equation solution exploits Hamiltonian 57‘3 — Qlnry = const

Space-Charge Dominated Free-Expansion (e, = €, = 0)

2
il der 7y (si) 2Q T'{“‘w) (s —55)
. {eﬁ{m}-i- i 7“+(Si)H)

Imaginary Error Function
erf(iz) 2
erfi(z) = —~ = —
VT Jo

1 =v-1
The free-space expansion solutions for emittance and space-charge dominated

beams will be explored more in the problems
SM Lund, USPAS 2018

2Q
r(9) = (s) + 17 (s) (s = )

74(s) = 74(s:) exp (—Tf(si) +

1 ¥4
re=loetn,) dt ex(r)
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S5: Matched Envelope Solution: Lund and Bukh, PRSTAB 7, 024801 (2004)

Neglect acceleration (7,0, = const) or use transformed variables:

. B 2Q _ &
) ) e e
p Qs
Ty (s) + Ky(s)ry(s) 1o (5) + 7y (5) 7“5 (s) 0
ro(s+ Lp) = ry(s) ry(s) >0
ry(s+ Lp) = 1y(s) ry(s) >0

Matching involves finding specific initial conditions for the envelope to
have the periodicity of the lattice:
Find Values of: Such That: (periodic)

75 (85 + Lp) = 13,(51)

ro(s;)  Th(S:) ro(si+ Lp) = 14(s:)
7y (si 4 Lyp) = 1y (si)

ry(si) 1y (s0) Ty(si + Lp) = ry(si)

+ Typically constructed with numerical root finding from estimated/guessed values

- Can be surprisingly difficult for complicated lattices (highog ) with strong space-charge
# [terative technique developed to numerically calculate without root finding;

Lund, Chilton and Lee, PRSTAB 9, 064201 (2006)

- Method exploits Courant-Snyder invariants of depressed orbits within the beam
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Typical Matched vs Mismatched solution for FODO channel:
Matched Mismatched

o Matched Beam Envelope o Envelope Solution: Matched and Mismatched Beam
R T e e — T
L T H T.— MisMatched Beam (Dashed) .

rn T
£ £
- - 30
8 4
aQ Q
° S
:
& hiv
> >
X X

207 \ 7Y L .
r = —Ky H Matched Beam (Solid) /77 — — /iy

K 1
; LIl |
ARl |

1 1 1 1 L 1 1 L 1 1 L 1 1 Il
10 15 0 5 10 15
Axial Coordinate, s (m)

0
Axial Coordinate, s (m)
The matched beam is the most radially compact solution to the envelope
equations rendering it highly important for beam transport

+Matching uses optics most efficiently to maintain radial beam confinement

The matched solution to the KV envelope equations reflects the symmetry of the
focusing lattice and must, in general, be calculated numerically
Envelope equation very nonlinear

rz(s+ Lp) = 14(s)
Ty(s+ Lp) = 1y(5)

Ex = &y /o9 = 0.2  Perveance Q iterated to
obtain matched solution
with this tune depression

Parameters
L,=0.5m, oop=280°, n=0.5

€ = 50 mm-mrad

Solenoidal Focusing FODO Quadrupole Focusin
(Q = 6.5614 x 107%)

(Q = 6.6986 x 107%)

Edge Radii r; and 7, (mm)

Axial Coordinate s/L,
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Syrl}metrles of a matched beam are 1nt§rpr§ted in terms of a lo.cal rms S6: Particle Orbits with Space-Charge
equivalent KV beam and moments/projections of the KV distribution .
[see: S.M. Lund, lectures on Transverse Equilibrium Distributions] The envelope equation reflects low-order force balances
- NIAICHEa DEam ENVELOPE ana FOcusing Funcuon " n - 2Q - ﬁ | ~0 Matched Solution:
£ T fala | i o3 T(S+L)_T(3)
z 0 ; : :T;C‘F’f’yj P x p) — Tz
g 4 ; 2 i —
E:. 6 Koy T’// + : r _ 2Q o s_y i 0 Ty(S + LP) - Ty(s)
7544,—|—l 1 v Ty rp 1, 73 »
. . 4 o 02 i 04 i 06 i 0.8 L : i ; vi LYo H}z(s + Lp) = Ky (s)
Projection | Axial CoordinateliLattice Periods) ! ; Applied Space-Charge Thermal (s+L,) = ' (s)
y v v4 v vl Focusing  Defocusing Defocusing Ry p) = FylS
Terms: Lattice Perveance  Emittance
Xy x x x x X
area: T, Ty # const ! , Comments:
‘ x’ . x . + Envelope equation is a projection of a 4D (linear field) invariant distribution
, * * - Envelope evolution equivalently given by moments of the
—— =x;()fnst x 4D equilibrium qistribption . . o
(CS Invariant) ‘ + Most important basic design equation for transport lattices with high space-charge
£y intensity
y-y' - Simplest consistent model incorporating applied focusing,
area: e, = const y space-charge defocusing, and thermal defocusing forces
(CS Invariant) ‘ : - Starting point of almost all practical machine design!
55 Accelerator Physics 56
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The matched solution to the envelope equations reflects the symmetry of the
focusing lattice and must in general be calculated numerically

Matching Condition

rz(s+ Lp) =14(s)
ry(s + Lp) = 1y(s)

Example Parameters

L,=05m, 09o=280° n=0.5

€x = €y = 50 mm-mrad
o/og=0.2

FODO Quadrupole Focusing
(Q = 6.5614 x 107%)

Solenoidal Focusing
(Q = 6.6986 x 107%)

3

w®

| e
l:i/r: \/
- Ty \\

O ‘
Vo ow v e W w

Edge Radii v, and r, (mm)
Edge Radii r; and r, (mm)
&
i
I
|
t?

o oz oa ws 0E
Axial Coordinate s/Ly

Axvial Goondmane s f].

The matched beam is the most radially compact solution to the envelope
equations rendering it highly important for beam transport

Particle orbits in the presence of uniform space-charge can be strongly
modified — space charge slows the orbit response:

The particle equations of motion:

2 4 kg = ——L o¢ I S
my; By mpBEc? Ox Ox  weg (ry +7y)7s
" q 8¢ 3(15 A Y
Y+ Kyy = AN
Y m% e m; BEc? 83/ 52/ meo (rz +1y)7y
become within the beam:
" _ 2Q _
10+ {0~ e 7 =

2Q
S+ {rl0) - o 1O =0
Here, Q is the dimensionless perveance defined by:
qA
" 2meomapfEc?

= const
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If we regard the envelope radii 7'z, 7y as specified functions of s, then these Review (1): The Courant-Snyder invariant of Hill's equation
equations of motion are Hill's equations familiar from elementary accelerator [Courant and Snyder, Annl. Phys. 3, 1 (1958)]
hysics:
il Hill's equation describes a zero space-charge particle orbit in linear applied
x"(s) + ﬁiﬂ(s)x(s) -0 focusing fields: -
T ' (s) + k(s)x(s) =0
y"(s) /iz (s)y(s) =0 (s) (s)x(s)
¢ 2Q As a consequence of Floquet's theorem, the solution can be cast in
Ko (8) = Kk (8) — phase-amplitude form:
) =) @) oy 1
x(s) = Ajw(s) cos(s) P'(s) = 5
KT (8) = ey () — i)
y — My [re(s) + 74 (5)]ry(s) where w(s) is the periodic amplitude function satisfying
1
1
w'(s) + r(s)w(s) — =0
(5) + K()(s) = 33
w(s+ Ly) = w(s) w(s) >0
(s) is a phase function given by
v =i+ [ o
s) =1 — =
‘ Sq wQ(S)
A; and ¥ are constants set by initial conditions at s = s;
59 60
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Review (2): The Courant-Snyder invariant of Hill's equation

From this formulation, it follows that

x(s) = A;w(s) cosp(s) W (s) = 1
, , 4 w(s)
x'(s) = A;w'(s) cos(s) — w(s) sin(s)
5 = A;cosv

wr' —w'x = A;siny

square and add equations to obtain the Courant-Snyder invariant

2
(g) + (wa' —w'z)* = A? = const

+ Simplifies interpretation of dynamics
+ Extensively used in accelerator physics

Accelerator Physics

Phase-amplitude description of particles evolving within a uniform density beam:

initial conditions yield:
S = 5;
A,; = const

Phase-amplitude form of x-orbit equations:
x(8) = Agiw,(s) costh(s)
Ay .
2/ (s) = Agiw!,(s) cos b, (s) — w:(:;) sin ¥, (s)

= const
where
7 _ 29 wa.(s) — 1 =
B N (0 O Rt T O By
Wy (s + Lyp) = wy(s) wy(s) >0
0alo) =t [ o

identifies the Courant-Snyder invariant

2
T
(—) + (wypa’ — wlx)? = A2, = const
wa:

Analogous equations hold for the y-plane
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The KV envelope equations:

Define maximum Courant-Snyder invariants: costhy, =1
Er = MaX(AiZ-) T = Agiwg cos Yy > Tp = Ap maxWs
_ 2 y
fy = MaX(Ayi) Elliptical
Values must correspond to the beam-edge radii: iy ry
r(s) = VEaw,(s) P :
Ty (8) = /Eywy(s) 2T 1 -

The equations for w_and w _can then be rescaled to obtain the familiar

KV envelope equations for the matched beam envelope

; B 2Q _ & _
7z (8) + K (s)ra(s) ro(s) +1y(s)  ri(s) 0
" Qe
Ty (s) + Ky(s)ry(s) 72(5) + 75 (3) Tg(s) 0
r5(s 4+ Ly) = ry(s) ry(s) >0
ry(s+ Lyp) = ry(s) Ty(s) >0
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Contrast: Review, the undepressed particle phase advance calculated in
the lectures on Transverse Particle Dynamics

The undepressed phase advance is defined as the phase advance of a particle in

the absence of space-charge (Q = 0):
+Denote by 90z to distinguished from the “depressed” phase advance o,

in the presence of space-charge

ng + KpWoy — —3- = wa(S + Lp) = wOa:(S)
Wogy
si+Lp ds woz > 0
00z — / —5
Si Wog
This can be equivalently calculated from the matched envelope with Q = 0:
e2
ng + KaToz — Tx =0 TO%(S + Lp) = TOx(S)
"0z ro. > 0
si+Lyp ds Ox
90z = Ex / 2
Si "0z

is arbitrary (answer for 0o, is independent)
Accelerator Physics

+ Value of
SM Lund, USPAS 2018
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Equation of motion for x-plane “depressed” orbit in the presence of space-charge:

2Q
[r2(s) + 7y (8)]ra(s)

a(s) + ka(s)(s) —

z(s) =0

" — 20 Wa\S) — : -
wi(s) + wals)as) — oy ) ~ ey =©
wx(s)—ﬁ/}xi—}-/%w;l—fg) Wy = \/7‘:_

20 - S
T4 (8)+7y(8) r3(s)

13(8) + Ko (8)r2(s) —

Depressed particle x-plane orbits within a matched KV beam in a periodic
FODO quadrupole channel for the matched beams previously shown

Solenoidal Focusing (Larmor frame orbit):
Undepressed (Red) and Depressed (Black) Particle Orbits

0.02
z 0.01 - = =3 x-plane orbit:
D 0 !
o =0=
5 ool Y Y
_ L U ey
0.02 o Both Problems

00 25 5 75 10 125 15 175 20 Tunedfor

. . o9 = 80°
FODO Quadrupole Focusing:Lattice Periods 00
Undepressed (Red) and Depressed (Black) Particle Orbits 0_0 =0.2

0.02 —
< 0.01 x-plane orbit:
All particles have the same value of depressed phase advance (similar Eqns in y): TEJ 0 - y=0=1y
si+Ly ds —-0.01
O A O R 0oyt oy o AR
Sq r% (5) Ko
00 25 5 75 o 125 15 175 20
Lattice Periods
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Clarification Comment on previous plots:

For the shown undepressed orbit (no beam space-charge), the particle is
integrated from the same initial condition as the depressed orbit (in
presence of space-charge). In this context the matched envelope which
is shown including space-charge has no meaning.
+ A beam rms “edge” envelope without space-charge 7o, could also
be shown taking

T02(8) = VEzwoz () = /€2 B0 (5)

+ This envelope will be different than the depressed beam.
The undepressed particle orbit can be calculated using phase-amplitude
methods or by simply integrating the ODE describing the particle
moving in linear applied fields:
" + ky(s)z =0
x(s=s8;) = x;

, ,  Same initial condition as depressed
' (s=s;) =1,
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Depressed particle phase advance provides a convenient
measure of space-charge strength

For simplicity take (plane symmetry in average focusing and emittance)
00z = 0oy = 00 Ex =&y =€
Depressed phase advance of particles moving within a matched beam envelope:

sitle (g sitle (g
oc=¢ =
/s~ r2(s) /s ry(s)

7 7

Limits: . o
1) CIQILHO g =200 Envelope just rescaled amplitude: 7“92: = Ew%x
2) limo =0 Matched envelope exists with € = 0

e—0 Then £ = 0 multiplying phase advance integral

Normalized space charge strength Cold Beam
0/ oo — 0 (space-charge dominated)
e—=0
0<o/op<1
o /0_0 =1 Warm Beam

(kinetic dominated)
Q—0
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For example matched envelope presented earlier: repeat periods

Undepressed phase advance: ¢, = 80° 45
Depressed phase advance: 5 =16° — 0/op =0.2 22.5
Periods for

Solenoidal Focusing (Larmor frame orbit): 360 degree

phase advance

Undepressed (Red) and Depressed (Black) Particle Orbits

0.02
gz 001 x-plane
D 0 o orbit
= _o01 y=0=y
_O'OQJ_LI_LI_LI_LI_IJ_LI_I_I_LI_U_LI_LI_LFLI_IIE_U_U_LI_I_I_L
0.0 2.5 5 7.5 10 125 15 175 20
- Lattice Periods
4.5 periods
b 22.5 periods :
Comment:

All particles in the distribution will, of course, always move in response to both applied
and self-fields. You cannot turn off space-charge for an undepressed orbit. Itisa
convenient conceptual construction to help understand focusing properties.
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The rms equivalent beam model helps interpret general beam evolution in
terms of an “equivalent” local KV distribution with uniform density

Real beams distributions in the lab will not be KV form. But the KV model can
be applied to interpret arbitrary distributions via the concept of rms equivalence.
For the same focusing lattice, replace any beam charge p(z,y) density by a
uniform density KV beam of the same species (¢, ™ ) and energy ( 3;) in each
axial slice (s) using averages calculated from the actual “real” beam distribution
with: < ) fd21'L fdzxﬁ_ e fo
[&xy [ fo

rms equivalent beam (identical 1st and 2nd order moments):

.>J_:

f1 = real distribution

Quantity KV Equiv. Calculated from Distribution
Perveance Q =q? fdzﬂh fd%l fiL /[27“07351302]
z-Env Rad 7, = <x2>1¢/2

y-Env Rad 7y = 2(92&/2

x-Env Angle 7/, = 2<$-’E/>J_/<332>i_/2

y-Env Angle 7, =2(yy') 1L/ (y2>1/2

z-Emittance ¢, = 4[(a?) L (2?1 — <5C$C/>J_]1/2
y-Emittance &, = 4[(y*) L)1 — (') L]?
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Comments on rms equivalent beam concept:

+ The emittances will generally evolve in s
- Means that the equivalence must be recalculated in every slice as the
emittances evolve
- This evolution is often small
+ Concept is highly useful
- Unfiorm density KV equilibrium properties well understood
and are approximately correct to model lowest order “real” beam properties
- See, Reiser, Theory and Design of Charged Particle Beams (1994, 2008)
for a detailed and instructive discussion of rms equivalence
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S7: Envelope Perturbations: Lund and Bukh, PRSTAB 7, 024801 (2004)

In the envelope equations take:

Envelope Perturbations: Driving Perturbations:

ra(5) = Tam(s) + O7a(s) Fa(s) = Rals) +0Ra(s) -
ry(8) = Tym(s) + 6ry(s) tiy(s) = kiy(s) + Oky(s)
‘ L : Q — Q+06Q(s) Perveance
Matched Mismatch
Envelope Perturbations €a — £x + 0ex(s) Emittance
gy = €y + 0gy(s)

Perturbations in envelope radii are about a matched solution:

Tmm(S + Lp) = Txm(s) Tznz(s) >0

rym(s + Lp) = T'ym(s) rynz(s) >0

Perturbations in envelope radii are small relative to matched solution and driving

terms are consistently ordered:
Tam(8) > 074 (8)|

Tym(8) > |01y (s)|

# Driving perturbations and distribution errors generate/pump envelope perturbations
- Arise from many sources: focusing errors, lost particles, emittance growth, .....

Amplitudes defined in terms of
producing small envelope perturbations
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The matched solution satisfies:
+ Add subscript m to denote matched envelope solution and distinguish from
other evolutions

Te =7 Tzm For matched beam envelope

with periodicity of lattice
Assume a coasting beam with 7,3, = const or that emittance is small and the
lattice is retuned to compensate for acceleration to maintain periodic Kz, Ky

Ty — Tym

" (8 ko (8) T (8) — 29 - Ei =
" — 2Q - 613 =
Tym (8) 4 Ky (8)1ym () Tam(8) + Tym(s)  13.(s) 0
Ta:m(S + Lp) = Trm(s) sz(s) >0
Fym (s + Lp) = Tym(s) rym(s) > 0

Matching is usually cast in terms of finding 4 “initial” envelope phase-space

values where the envelope solution satisfies the periodicity constraint for specified
focusing, perveance, and emittances:

Tom(8i) T (si)

T’ym (81) T;m (Sl)

SM Lund, USPAS 2018

Linearized Perturbed Envelope Equations: (steps on next slide)
+ Neglect all terms of order 62 and higher: (57“z)2, 57‘157“31, 0Q0Ts, - -

2Q 32
or” 1) —= (4 1) —25
Ty + K0Ty + (Tmm+rym)2( Ty +0ry) + i Ty
2 2e,
= —Temlky + ————6Q + %551
Tzm +7’ym xm
2Q 3e2
or!’ 1) —— 01y + 6 -5
Tyt Ry 0Ty + (Tmm'i'rym)Q( T +07y) + o Ty
— by + 50 + 250 5
Y m + Tym o

Homogeneous Equations:

+ Linearized envelope equations with driving terms set to zero

2 3e2
Orll + Ky 0ry + —Q2(5rz + ory) + %57‘1 =0
(rem + rym) Tam

32
(0ry + 0ry) + T4—y5ry =0

ym

2Q
or!’ + K, 0Ty + —mMF——
Y Y Y (rwm + Tym)2
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Derivation steps for terms in the linearized envelope equation: Collect all terms and neglect higher order:
2
Inertial: T = T+ 07, Vi (8) + Ko (8)1am (8) = ety — oy
2
Focusing: RaTy _>(K/z + 5/117)(sz + (57'1‘) 57‘;/ —+ ,‘gz(s'rz + %(57’1 -+ §ry) -+ :gf—x(srz
Tem + 7T T
~ KgTum + KeOTum + 0KgTem + ©(57) o o 9 9
= —T‘xm(sl‘ﬁ}x =+ W&Q =+ 3—1(56x
2 2 20 Tm ym xm
Perveance: @ — @+ 20Q .
Tz + Ty  Tom + Tym + 075 + 07y Use the matched beam constraint:
2Q Ory + Or 2
~ 1— Y " _ 2Q &z -0
Tem + Tym |: Tem + Tym rxm(S) * Rx(s)mm(s) Tam (8)+rym(s) 73 ,,(8)
+ ﬂ + @(52) Giving:
Tem Tym 5
2Q 3e
" xT
5 5 Ory 4 Kgpory + ———————— (0ry, + 0ry) + =01
Emittance: E_ﬂé (63’_‘_46;93)3 T (ram A rym)? " ok
2 2
2 (rem +(; rz) , 5 = —Tam0Kz + e oQ + %55:0
2e,0e 3 T Tzm T Tym Tzm
~ Tt [1—3 $}+9(52)
Tzm xm rm + analogous equation in y-plane
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Martix Form of the Linearized Perturbed Envelope Equations:

i5R+K-5R:5P
ds

ory
sR= | % | Coordinate vector
| ory
sr) Coefficient matrix Has periodicity
0 -1 0 0 kom = _2Q  of the lattice period
K= kem 0 kom 0 (TET”‘ +rym 2
- 0 0 0 -1 52 .
kom 0 kym 0 k7m =r;+ 3 + kom =%y
7m
0
2 0es
6P = 0K Tam + 27w"»+'um +255 .. .
= 0 Driving perturbation vector
yoey
76'{1/7?/7“ + 27‘ 7n+7‘y1n + 25 yi

Expand solution into homogeneous and particular parts:

SR = 6R;, + R, dR;, = homogeneous solution

0R, = particular solution

d d

TORy + K- 6R;, =0 TR, + K -0R, = 0P
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Homogeneous Solution: Normal Modes

+ Describes normal mode oscillations

+ Original analysis by Struckmeier and Reiser [Part. Accel. 14, 227 (1984)]
Particular Solution: Driven Modes

# Describes action of driving terms

# Characterize in terms of projections on homogeneous response (on normal modes)

Homogeneous solution expressible as a map:
OR(s) = M, (s|s;) - 0R(s;) Now 4x4 system, but analogous to the
SR(s) = (874, 1, 61y, 677 2x2 analysis of Hill's equation via

- T x? Y Yy

M 4 x4 . transfer matrices: see S.M. Lund
e(s|si) B X 4 transter map lectures on Transverse Particle Dynamics

Eigenvalues and eigenvectors of map through one period characterize normal
modes and stability properties:

Me(Si + Lp|5i) . En(Sl) = )\nEn(Sz)

Mode Expansion/Launching

s):ZanE

oy = const (complex)

Stability Properties

. o0, — mode phase advance (real)
— ion
An = ne ~n — mode growth/damp factor (real)
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Eigenvalue/Eigenvector Symmetry Classes:

a) Stable

i S ; b) Unstable. Confluent
- Eigemalues Eigenvectors onfluent Eigenvalues Eigenvectors
nh 1 i Im A i)
I X n A= 1pe B
N A - o)
123 /}\ - Jf\ Ay = 1A = (/7p)e b:N
Lo [sds| N o, L,
B = E I | A= =Uype | By= Dt
. 1 3 !
5 e \ M|\ / Reky, —io) *
Yy = by w2 Ay= At =vpe By = F
O
M
<) Unstable, Lattice Eigemal Figeavectors d) Unstable, Double Lattice
i Am"“"“ igemvalues igenvoctors Resonance Eigenvalues Eigenvectors
n ic Tm 2y, &
1 n -
- h=e o J—— B (real)
e o . =N
Ay = 7, o By (real) 1y = 1™ B (ea)
‘> - = ® = 1 = B i >,
s \ ’Rch Ay=rF=e By = Iy L Ay = 1/ = (/e T3 (real)
‘k.\\ P / in : i
i Ay =1/hy = (177 e B (real 2
N 4 5= (177)€ By (real) Ay = 17k = (177" By (real)

Symmetry classes of eigenvalues/eigenvectors:
+ Determine normal mode symmetries
+ Hamiltonian dynamics allow only 4 distinct classes of eigenvalue symmetries
- See A. Dragt, Lectures on Nonlinear Orbit Dynamics,
in Physics of High Energy Particle Accelerators, (AIP Conf. Proc. No. 87, 1982, p. 147)
+ Envelope mode symmetries discussed fully in PRSTAB review
# Caution: Textbook by Reiser makes errors in quadrupole mode symmetries and
mislabels/identifies dispersion characteristics and branch choices
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Pure mode launching conditions:
Launching conditions for distinct normal modes corresponding to the
eigenvalue classes illustrated:
Ay = mode amplitude (real) ¢ = mode index
1)y = mode launch phase (real) C.C. =

Case Mode
(a) Stable

complex conjugate

Launching Condition  Latticc Period Advance
I-Stable Osc.  |0Ry = A1¢™E; + C.C. MRy (4h1) = 6Ry (41 + 1)

2 - Stable Osc. | 0Ry = Age™2Ey + C.C. M 0Ro(thy) = 6Ra(ths + 0)
(b) Unstable 1 - Exp. Growth [dR; = A;e"E; +C.C. M.0R, (1/}1) YR (1[)] + 01)
Confluent Res. 2 - Exp. Damping | 6Ry = A3¢™?E; + C.C. M O0Ra(v0s) = (1/v1)0Ra (s + ay)
(c) Unstable 1 - Stable Osc. ORy = A1e™ME; + C.C. MR, (%) = 0Ry (41 + 74)
Lattice Res. 2 - Exp. Growth |0Ry = AsEs MRy = —120Re

3 - Exp. Damping | dR3 = A3E, MOR; = —(1/72)0Rs
(d) Unstable 1 - Exp. Growth |[0R; = AE, MRy = —110R;
Double Lattice 2 - Exp. Growth |dRy = AsEs M OR; = —20Rs
Resonance 3 - Exp. Damping | 6R3 = A3E; MRz = —(1/71)0Rs

4 - Exp. Damping | R = A/E, MR = —(1/7)0R4

0R; =0R¢(s;) Ep=Ei(s;)) Me=Mec(s;+ Lyls;)

A [Eq(5)e™1 () £ Bi(s)e™ 1)) 4 Ay [Ea(s)e2() + Bi(s)e~¥2()],  cases (a) and (b)
OR(s) = { A1[E;(s)e1 () 4 Ei(s)e 1)) 4 A3Eq(s) 4+ AsEy(s), case (c)
A1Eq(s) + AzEy(s) + AzEs(s) + A4Ey(s), case (d)
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Decoupled Modes
In a continuous or periodic solenoidal focusing channel
K (5) = riy(s) = k()
with a round matched-beam solution
€x = &y = € = const
rmm(s) = Tym(s) = Tm(8>
envelope perturbations are simply decoupled with:

0ry + o7
Breathing Mode: ory = %
ory — 0
Quadrupole Mode: Sr_ = %
The resulting decoupled envelope equations are:
Breathing Mode: [---]dry = kyory
Q 32 Oky + 0K 1 2 [ ey + 0c
(57";’_+|:/€+%+E (57"+:*T‘m fy +E(5Q+@ Ty
Quadrupole Mode: [--]or_ =r_or_

3e2 0Ky — Oky 2e [ dey — Ogy
ot [ T e = () 4 B (g
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Graphical interpretation of mode symmetries:

Breathing Mode: y Breathing Mode (+)
Sr. + or Quadrupole Mode (-) /EnVElOPe
67"+ =2 ¥ Envglope Breathing
2 N Mode (+)
) Quadrupole
Mode (-)
'm
Quadrupole Mode:
Sr — 0Ty — 01y
2
Matched Beam -
Envelope m BI’X
Quadrupole and
Breathing Modes
Q e? . . :
Ky =K+ —+ 37 Breathing Mode Linear Restoring Strength
T'm Tm
52
K =K+ 37 Quadrupole Mode Linear Restoring Strength
T
m
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Decoupled Mode Properties:

Space charge terms ~ Q only directly expressed in equation for 6r,(s)
+ Indirectly present in both equations from matched envelope 7,,(s)

Homogeneous Solution:
+ Restoring term for 8r,(s) larger than for 8 (s)
- Breathing mode should oscillate faster than the quadrupole mode

2 2
Kp=h+ L +35 >k =r+35
Particular Solution:

+ Misbalances in focusing and emittance driving terms
can project onto either mode

- nonzero perturbed k,(s) + k(s) and g(s) + £(s)
project onto breathing mode
- nonzero perturbed x,(s) - k,(s) and €(s) - €(s)
project onto quadrupole mode
+ Perveance driving perturbations project only on breathing mode
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Previous symmetry classes greatly reduce for decoupled modes:
Previous homogeneous 4x4 solution map:
O0R(s) = Mc(s]s;) - 0R(s;)
OR(s) = (01, o1y, 07y, 077
M. (s|s;) = 4 x 4 transfer map

Reduces to two independent 2x2 maps with greatly simplified symmetries:

SR = (0ry, 00, 6r_,0r’)

MaGsc Lyls) = [V B )

0 M_(s; + Ly|s;)

HereM . denote the 2x2 map solutions to the uncoupled Hills equations for 7 :

ory + kedry =0

_ Q 362 57";t _ el . 5Ti

Ky =K + 77"%,, -+ 7';1,,, 57,/i = M:t@bz) 57Ji .
. 3e?

Ko =K+ _7’;1n
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The corresponding 2D eigenvalue problems:

Eigenvalue Symmetry 1:

Stable
Mi(si + Lp|8i) . En(sz) = /\iEn(si)
Im2, 4 io,
7‘1 =e
Familiar results from analysis of Hills equation (see: S.M. Lund lectures on A Launching
Transverse Particle Dynamics) can be immediately applied to the decoupled case, ] _ Condition / Projections
for example: 1 Re A,
- is ¥ Breathing Mode (+)
A 04 sdrunole _ Envelope
® _ _ = Quadrupole Mode (-)| h
1 . hy = 1y = e Bmeiope. S Breathing
3 |Tr Mt (s; + Lpls;)| <1 <—  modestability (L \ By 8 Noge )
P -, S =—or Quadrupole
. O DO \ A ¥~ "% xMode ()
Eigenvalue Symmetry 2: rml [y : o
Eigenvalue symmetries give decoupled mode launching conditions Unstable, Lattice Resonance : T
Ima, W,
—in s
by =vpe
Matched Beam B -
Ay [ 1k, Envelope [
el Quadrupole and
1 Re )\,_!_ Breathing Modes
Mo, =y, e
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General Envelope Mode Limits
Using phase-amplitude analysis can show for any linear focusing lattice:

1) Phase advance of any normal mode satisfies the zero space-charge limit:

lim oy = 20
Q—0 ¢ 0

2) Pure normal modes (not driven) evolve with a quadratic phase-space
(Courant-Snyder) invariant in the normal coordinates of the mode

Simply expressed for decoupled modes with ki = Ky, €x =&y

5 2
r+(s) + [w! (8)0r+(s) — wx(s)0r).(s)]? = const
w(s)
where Q 22
w! + kwy + Euq, + Euq — E =0
3e? 1
w'_'+liw,+%w,f—=0

m
wx (s + Lp) = wi(s)
Analogous results for coupled modes [See Edwards and Teng, IEEE Trans Nuc. Sci. 20, 885 (1973)]
+ But typically much more complex expression due to coupling
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S8: Envelope Modes in Continuous Focusing
Lund and Bukh, PRSTAB 7, 024801 (2004)

) 2
FOCllSlng‘ K (s) = /{/y(s) = k?ﬂ() = <%) = const
p

Matched beam: €z = €y = € = const
symmetric beam: Tom (3) = Tym (s) = 7,, = const
2
matched envelope: k2 Q e 0
Gorm = = = 5 =
Tm T

depressed phase advance:

O (rm/Ly)? T2,

Dec(:lel Pi‘»gzjmle\t;; lzlc:;i.ed for scaled solution: k%o 52 _ 0852 _ (0‘ /0‘0) 9
p : Q2 Q212 ~ [1— (0/00)?]?
=(8) =
5ra(s) = M
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Envelope equations of motion become:

d? [or or a? [ Ok 0K 0Q oe oe
24 (0 2 (074 ) _ 00 Ok | OKy 2 Q %z | Oy
pd52<rm>+a+<rm k[230+k/230 + (05 — U)Q + B

Properties of continuous focusing homogeneous solution: Normal Modes

2
, ) Mode Phase Advances Mode Projections
de_ <57?> + 02 (674*) __% 5& _ Oty +o2 <6& _ 5&) 3 y Breathing Mode (+)
Pds? \ 1, “\m 2 \ k3 k3 € € £ 2.0 Quadrupole Mode () Enclope
i 18 Envelope = Sr ér Breathing
— 2 2 . . X Mode (+)
+=\/208+20% “preathing”  mode phase advance Breathing Mode oy
& . \ ode
— 2 2 « ” ~ 1 6 6+ /00
o_ =105+ 30 quadrupole” mode phase advance 3 14
=} . X
Homogeneous equations for normal modes: E 6./59
g q : g 1.2 Quadrupole Mode
2 =
d? ox g1 T
— . Matched Beam - -
752 ——0ry + T ory =0 5 %.o 02 04 06 08 1.0 Emelope P
p Z Quadrupole and
G/GO Breathing Modes
+ Simple harmonic oscillator equation
. ory + or
Homogeneous Solution (normal modes): o) =1\/202 + 202 Breathing Mode: 074 = %
!
s—s; or' (si) . S—8; 5 5
— . = — 2 2 Ty —OT
or4(s) = 0r(s;) cos (Ui I, ) + or/L, sm | o4 L, o =y\/og +30 Quadrupole Mode: §r_ = %
dry(si), 0r'i(s;) mode initial conditions
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Particular Solution (driving perturbations):
Green's function form of solution derived using projections onto normal modes
+ See proof that this is a valid solution is given in Appendix A

) - o [ G 9
5pu(s) = %g {57%5) N 52225) o 02)5%5) o {552(5) . 55_1,5(5)}
03 | 0ka(s)  Oky(s) o [dex(s)  dey(s)
op-(s) _?0{ k3o a k3o ]+U [ e € }
- 1 . 5—38
Gi(s,s) = T/Lpsm <O’iL—p)

Green's function solution is fully general. Insight gained from simplified solutions for
specific classes of driving perturbations:
+ Adiabatic
+ Sudden
+ Ramped
+ Harmonic

covered in these lectures

covered in PRSTAB Review article
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Continuous Focusing — adiabatic particular solution

For driving perturbations dp4(s) and 0p—_(s) slow

on quadrupole mode (slower

mode) wavelength ~ 2wL,/o_ the Green function solution reduces to:

> P b (0/00)2} 5Q(s)

).

LJr(S) = 75104—(5) Focusin
Tm o2 g
e 1 1 [ 6K4(s) | Oky(s)
B {QIJF(U/UO)Q} 2 ( k?—i() * k?—i()
(0/00)> 11 [beu(s) = dey(s)
i L+(U/ao)2] 5( e e )
Emittance
or(s) _ b (o .
o o2 ocusing
[ } 1 (0rg(s)  Oky(s)
O’/O’o 2\ k3 k3,
2(0/a0)? dex(s)  dey(s)
[ 1+3 0/000 } ( e € ) ’
~——— Emittance

Perveance

21+ (0/0p)? Q

Coefficients of adiabatic
terms in square brackets“[ ]”

T
o_ =y/o¢ + 302
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Derivation of Adiabatic Solution:
+ Several ways to derive, show more “mechanical” procedure here ....

Use:

ore(s) 1 /sdgGi(s,é)tiDi(g)

~ 72
Tm Lp s

G+ (s 5)—#sin o S8 ! icos o 58
Y e, UL, ) (eu/L)ds TR L,

Adiabatic , 0

(7. d s—38\ op+(5) /s: s—35\ d dp+(3)
—/Szds FE [cos (O’i I ) U;Qt Sida cos | o4 I 7 Ui

~ ~\ |5=s 0
—cosor2 =5 op+(3) _ Opx(s) _ cos (o2 525 0p+ (%)
. Lp Ugt 3=s U:2t - Lp 02
_ dpx(s) No Initial Perturbation
= 2
0%

Comments on Adiabatic Solution:
+ Adiabatic response is essentially a slow adaptation in the matched envelope to
perturbations (solution does not oscillate due to slow changes)
+ Slow envelope frequency o_ sets the scale for slow variations required

Replacements in adiabatically adapted match:

TI:Tm—)Tm+(5T++(5T_

Ty =Tm — T'm +0r_ — 014

Parameter replacements in rematched beam (no longer axisymmetric):

Ky = k%o — k%o + 0k (s)

Ky = k3o — kjo + 0ry(s)
Q= Q+0Q(s)

€px =€ — &+ 0ex(8)

(s)

ey =€ e+ 0gy(s
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Continuous Focusing — adiabatic solution coefficients Continuous Focusing — sudden particular solution

a) 8r, = (8r,+ r,)/2 Breathing Mode Projection For sudden, step function driving perturbations of form:

g 05 Relative strength of: Sma s = 5, — vl coordinate Hat quantities

2 4|7 v gth of: Op+(s) = 0p+O(s — sp) =% perturbation applied are constant

é 03 1oyt N T + Space-Charge (Perveance) amplitudes

E 0'2 +(oo0) // + Applied Focusing with amplitudes:

é B Focusinlg Terms: E:::::nce Y Emittance o Ug (5.‘{.@ 5/{1/ 9 9 6@ 9 55.10 5€y

g 0.1 Ty T orey? ] op+ = Sl T T (Crte )6 +to B + - | = const

3 0 T+ (@/og? terms vary with space-charge 8o 80

=0 . —  — —

$ 00 02 0.4(};/60.6 08 1.0 depression (0/09) for both o KA S 2P 2 .

0 breathing and quadrupole P- =75 |32 T 12 c s |7

b) &r. = (8r,- 8ry)/2  Quadrupole Mode Projection 40 projections A0 A0

fj 1.0 T The solution is given by the substitution in the expression for the adiabatic solution:

2 0.8 (/5 + Manipulate Green's function solution to show (similar to Adiabatic case steps)

] 1+(0/0y)% \\

(-é 0.6 > Plots: allpw one to read off the ore(s)  Opa(s)

2 0.4 |rosigrens relative importance of various T ?

3 — 1 1 : "

2 02| cqntrlbutlons to beapl with

K 0 mismatch as a function of s s

:-t; 0.0 0.2 0.4:;/60.6 0.8 1.0 space-charge strength 6ps(s) — Ops [1 — cos <0i 7 p)} O(s — sp)

0 P
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Sudden perturbation solution, substitute in pervious adiabatic expressions:

ore(s) _ 5pj: {1 s (Ui s ; Sp)] O(s — sp)

T'm U:E D

Ilustration of solution properties for a sudden 0P+ () perturbation term

2x Adiabatic
(Max Ecursion)

Adiabatic
Excursion

Adiabatic

Envelope Evolution, &r,/r,,

s=5p - 27‘3L;/0+ g

Axial Coordinate, s

For the same amplitude of total driving perturbations, sudden perturbations result in 2x the
envelope excursion that adiabatic perturbations produce

Continuous Focusing — Driven perturbations on a continuously
focused matched equilibrium (summary)

Adiabatic Perturbations:
+ Essentially a rematch of equilibrium beam if the change is slow relative to
quadrupole envelope mode oscillations (phase advance o_)

Sudden Perturbations:
+ Projects onto breathing and quadrupole envelope modes with 2x adiabatic
amplitude oscillating from zero to max amplitude

Ramped Perturbations: (see PRSTAB article; based on Green's function)
+ Can be viewed as a superposition between the adiabatic and sudden form
perturbations

Harmonic Perturbations: (see PRSTAB article; based on Green's function)
+ Can build very general cases of driven perturbations by linear superposition
+ Results may be less “intuitive” (expressed in complex form)

Cases covered in class illustrate a range of common behavior and help build
intuition on what can drive envelope oscillations and the relative importance of
various terms as a function of space-charge strength
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endix A: Particular Solution for Driven Envelope Modes particular solution to the Driven Hill's Equation can be constructed using a
Appendix A: Particular Solution for D Envelope Mod A lar sol he Driven Hill's E b d
Lund and Bukh, PRSTAB 7, 024801 (2004) Greens' function method:
Following Wiedemann (Particle Accelerator Physics, 1993, pp 106) first, consider more 5
general Driven Hill's Equation ac(s) = / ds G(S7 g)p(g)

" _ Si

7"+ r(s)z =pls) G(s,3) = S(s)C(3) — C()S(5)

The corresponding homogeneous equation: - - - — .
Demonstrate this works by first taking derivatives:
" o s B

@ + k(s)z =0 x:S(s)/ d5 C(3)p(3) — C(s)/ 43 S(3)p(3)
has principal solutions o e o /

z(s) = C1C(s) + C2S(s) C4,C = constants ¥ =5 )/g ds C(3)p(3) — € (S)/ ds S(3
where +p(s) [S(s)C(s) /3(9

Cosine-Like Solution Sine-Like Solution

C// + H(S)C — 0 8// + K/(S)S — 0 :S'(s)/ ds C(g)p(~) — CI(S / ds S( )p(s)

C(S = Si) =1 S(S = Si) =0 "_ S”(S) / a3 C(g) ( C,, 8)/ dSS p(s)

C'(s=s)=0 S'(s=s;)=1
Recall that the homogeneous solutions have the Wronskian symmetry: s)[S'(s)C /Z C'(s)S(s)]  Wronskian Symmetry

+ See S.M. Lund lectures on Transverse Dynamics, S5C —p(s) + S"(s)/ 45 CEP(E) — C(s) /Sdg S
W (s) =C(5)S'(s) = C'(s)S(s) =1 si si
99 100
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Insert these results in the Driven Hill's Equation:
Definition of Principal Orbit Functions

0 s 0 rs
2"+ K(s)z = p(s) + [3”/1 K,S]/ ds C(3)p(3) — [C" 4/kC] / ds 8(3)p(3)

Si

= p(s)

Thereby proving we have a valid particular solution. The general solution to the
Driven Hill's Equation is then:

+ Choose constants C;, C5 consistent with particle initial conditions at s = s;

2(s) = 2(s)C(s) + 2/(51)S(s) + / %d§ G(s,5)p(5)
G(s,3) = S(s)C(3) — C(s)S(3) '

Apply these results to the driven perturbed envelope equation:

2

5 T+ + L2 5Ti LT; Ly
P
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The homogeneous equations can be solved exactly for continuous focusing:

S —8;
C(s) = cos <ai I >
_ L, . S — 8
S(s) = —=sin (O'i 7 >

O+ D

and the Green's function can be simplified as:
G(s,8) = S(s)C(5) — C(s)S(3)

=

Lps_ s—38
= Zsin|o
o+ + L,

Using these results the particular solution for the driven perturbed envelope
equation can be expressed as:
# Here we rescale the Green's function to put in the form given in S8

‘W:E_"(Ls) - ;2 / ds G1(s,3)0p+(3)

;sin . 3;5
o+/L, L,

Gi (8, §) =
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*L— sin | o ] cos | o S5 —cos | o 55 sin | o S5
ot L, L, L, L,

Simplified Treatment of Envelope Modes

in Continuous Focusing Channels
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Properties of continuous focusing homogeneous solution: Normal Modes

Mode Phase Advances Mode Projections

¥ Breathing Mode (+)
Quadrupole Mode (-

Emvclope __—t—

~ reathing

/ B
\Ea'f B2 Made (4)
L N Quadrupole
8y =3 entode (y

N B ode ()

i
|
|

0

8 \

6| o,/ m PC

A— N 7 -
2 g’/ff” le Mod \& j

. uadrupole Mode / e

Matched B J - —

0 02 04 06 08 1.0  mi™ [, e
Quadrupole and
c /0, 0 Breathing Modes

o4 =\/20% + 202 Breathing Mode: Sry = 57‘1—;(5@
o_ =\/0? + 302 Ory — 01y

2

Breathing Mode -

_—

Normalized Mode Phase Advance

Quadrupole Mode:  §r_ =

Emelope Frem Lond , vspAs

S9: Envelope Modes in Periodic Focusing Channels
Lund and Bukh, PRSTAB 7, 024801 (2004)
Overview
+Much more complicated than continuous focusing results
- Lattice can couple to oscillations and destabilize the system
- Broad parametric instability bands can result
+Instability bands calculated will exclude wide ranges of parameter space from
machine operation
- Exclusion region depends on focusing type
- Will find that alternating gradient quadrupole focusing tends to have more
instability than high occupancy solenoidal focusing due to larger envelope
flutter driving stronger, broader instability
+Results in this section are calculated numerically and summarized
parametrically to illustrate the full range of normal mode characteristics
- Driven modes not considered but should be mostly analogous to CF case
- Results presented in terms of phase advances and normalized space-charge
strength to allow broad applicability
- Coupled 4x4 eigenvalue problem and mode symmetries identified in S6 are
solved numerically and analytical limits are verified
- Carried out for piecewise constant lattices for simplicity (fringe changes little)
+More information on results presented can be found in the PRSTAB review
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Procedure

1) Specity periodic lattice to be employed and beam parameters

2) Calculate undepressed phase advance 0¢ and characterize focusing
strength in terms of o

3) Find matched envelope solution to the KV envelope equation and
depressed phase advance O to estimate space-charge strength
* Procedures described in: Lund, Chilton and Lee, PRSTAB 9, 064201 (2006)

can be applied to greatly simplify analysis, particularly where lattice is unstable
- Instabilities complicate calculation of matching conditions

4) Calculate 4x4 envelope perturbation transfer matrix M (s; + Lp\si)
through one lattice period and calculate 4 eigenvalues

5) Analyze eigenvalues using symmetries to characterize mode properties
+ Instabilities
+ Stable mode characteristics and launching conditions

111
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1" Example: Envelope Stability for Periodic Solenoid Focusing

Focusing Lattice:
EROR RCAEH) Occupancy 7}

n € (0,1]

/2 jnL,,j /2 /2
 d=(—-n)L,/2

L, -
Lattice Period :

Matched Envelope Equation:
Fo(s) = riy(s) = £(s)
72 (8) = 1y(8) = Tm(s)

1n(5) + ()1 (5) — 755 — i =0

Tm(s + Lp) = rm(s)

SM Lund, USPAS 2018
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Using a transfer matrix approach on undepressed single-particle orbits set the
strength of the focusing function for specified undepressed particle phase
advance by solving:

+ See: S.M. Lund, lectures on Transverse Particle Dynamics

+ Particle phase-advance is measured in the rotating Larmor frame

Solenoidal Focusing - piecewise constant focusing lattice

cos og = cos(20) — 1_777@ sin(20) 0=

2
rals)] | (ra = 1) P - i
| 3 - K
TapT o Td/2d2t d=(1—n)L,
N
Lattice Period n € (0,1] = Occupancy
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Flutter scaling of the matched beam envelope varies for quadrupole and
solenoidal focusing

In both cases depends little on space charge with theory showing:

T | max e { (1— COSGO)(FW)(&*UQ)

" (1~ cos 00)"/2 gy g2 57

Based on: E.P. Lee, Phys. Plasmas, 9 4301 (2002)
for limit /09 — 0

Solenoidal Focusing
Quadrupole Focusing

+ Solenoids:
- Varies significant in both o and n

# Quadrupoles:
- Phase advance 0 variation significant
- Occupancy 7) variation weak

Solenoidal Focusing FODO Quadrupole Focusing
(-] e 0s B —
n=025
0.4 04 ! T
el O n=02 0.3
_vl?l 0.2 n=D0.50 "_l'u_=r-= 02
L i 1._[)______________—__—_‘ o n =050
- _— | .
. 0 "
50 o 120 &0 90 10
oy (degrees) oy (degrees)
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Solenoidal Focusing — Matched Envelope Solution

a) 65=80°andn = 075 High Occupancy Focusing:
}0.7 160 =0.5 (Mid Lens and Mid Drift Rg (8) = K/y(S) = K/(S)
{2, 0.6 660; ) ! o fr/;:o
S0 o — k(s + Lp) = K(s)
. ﬂ
L 05— |
£ 04 X Matched Beam:
=
: — €4 = €y = € = const

00 02 04 06 08 1.0

Axial Coordinate, /L, Tam(8) = rym(8) = rm(s)

b) 6p= 80°andn = 0.25 Low Occupancy Tm(s+ Lp) = rm(s)

307 | (Mid Lens and Mid Drift .
] 6lcy=0.5 T Comments:
< 0.6 -~

+ Envelope flutter a strong
function of occupancy 7
- Flutter also increases with
higher values of 0g
10 + Space-charge expands envelope
but does not strongly modify

periodic flutter
Accelerator Physics

00 02 04 06 08
Axial Coordinate, s/L,,
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Using a transfer matrix approach on undepressed single-particle orbits set the
strength of the focusing function for specified undepressed particle phase
advance by solving:

+ See: S.M. Lund, lectures on Transverse Particle Dynamics

+ Particle phase-advance is measured in the rotating Larmor frame

Solenoidal Focusing - piecewise constant focusing lattice

cosog = cos(20) — 1_7776 sin(20) 0=

2
Kals)] | (e = fy) & - )
| ! { i | >8
2T Td/2 1 d2t d=(1-n)L,
N
| Lattice Period

n € (0,1] = Occupancy
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Solenoidal Focusing — parametric plots of breathing and quadrupole envelope
mode phase advances two values of undepressed phase advance
a) =025, 6,=80° b) =025, 65=115°

+: Stable +: Stable +: Lattice Resonance
—: Stable —: Stable —: Stable
r W an
- \s J _ NP2V
ki
‘& 160 g 220| ©, Cont. Foc. |
& Lap} G Cont Bes. | 2 :rdnshad] '
E;, (dashed overlaid) ! B 150 !
= 120 - T
z g Z G _Cont. Foc
Z 100 ! G_Cont. Fac. z 140 ey ©
80 | idashed overlaid) .
8 ' g 100l '
i 00 02 04 06 08 10 g 00 02 04 06 08 10
G /ay G /Gy
5 Nomabin] 5 L R
= | 7] i H
A R 2 £ ot TN .
= £ : .
E 0.6 ' § 06 lf"hi
00 02 04 06 08 10 © 00 02 04 06 08 10
0/00 U/UO
b
1y
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Solenoidal Focusing — mode instability bands become wider and stronger for
smaller occupancy

0.75 (Blue)
n =73 025 (Green) op = 115°
_ 0.10 (Red)
=
£ 220 Comments:
8 # Mode phase advance in
Eo 1801 180 instability band 180 degrees
) per lattice period
> 140 + Significant deviations from
3 continuous model even outside
2 100 the band of instability when
S 00 02 04 06 08 1.0 space-charge is strong
B~ G /0 + Instability band becomes
stronger/broader for low
§ 1.4 Y. Band v_Band occupancy and
S _ - weaker/narrower for high
E 1.0% occupancy
= 0.6 - Disappears at full occupancy
S (continuous limit)
© 00 02 04 06 08 10
G /Oy
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Solenoidal Focusing — broad ranges of parametric instability are found for the
breathing and quadrupole bands that must be avoided in machine operation:
Contour unstable parameters for breathing and quadrupole modes to clarify

n=0.75 n=0.25

0 Breathmg and Quadrupole Mode Growth Factors, y, and y_

T
Infyg | :
0.8 i 0.8 '
¥- 0.0
0.6 Lattice Res. 0.6
O ©
S X Y
© 04 © 04 *
' Lattice
02| Lattice 0.2 Res.
Res. Band Band
0.0 0.0 .
120 140 160 180 100 120 140 160 180

GO (deg/period) G (deg/period)

Eigenvalues in unstable regions:
A = s ot v+ > 1 for unstable growing m.ode
In~vyy = e-folds of growth per period
SM Lund, USPAS 2018
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Solenoidal Focusing — parametric mode properties of band oscillations

a)m=0.75 b)n =025
Breathing Mode Phase Advance, 6,
1.0 § E 10 T § T
= a
08 3 0.8 N \ 3
0.6 z 06 b g
L = L : N
© 04 2 o4 2
3 : S
02 02 !
0.0 0.0 :
0730 60 90 120 150 180 030 60 90 120 150 180
G (deg/period) 0 (deg/period)
Quadrupole Mode Phase Advance, 6_
1.0 o 1.0 °
N \ N
\\E . \{E
0.8 8 08 A g
B g
06 Z 06 g
L 5 L S
L 04 E © 04 E
02 0.2
0.0 0.0 s
0 30 60 90 120 150 180 0 30 60 90 120 150 180
Gy (deg/period) O (deg/period)
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Parametric scaling of the boundary of the region of instability
Solenoid instability bands identified as a Lattice Resonance Instability
corresponding to a 1/2-integer parametric resonance between the mode oscillation
frequency and the lattice

Estimate normal mode frequencies for weak focusing from continuous
focusing theory:

04 ~ /202 + 202

o_ ~ /o0& + 302

This gives (measure phase advance in degrees):

Breathing Band:
or = 180°

= 1/202 + 202 = 180° =

+ Predictions poor due to inaccurate mode frequency estimates

- Predictions nearer to left edge of band rather than center (expect resonance strongest at center)
+ Simple resonance condition cannot predict width of band

- Important to characterize width to avoid instability in machine designs

- Width of band should vary strongly with solenoid occupancy 7

Quadrupole Band:
o_ = 180°

02 + 302 = 180°
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To provide an approximate guide on the location/width of the breathing and
quadrupole envelope bands, many parametric runs were made and the instability

band boundaries were quantified through curve fitting:
1.0

o
%

Quadrupole

o
=

Right
Breathing

o
IS

Left
Right

o
o

Tunc Depression, o/

Left

o
=]

30 60 90 120 150 180
Phase Advance, oy [Degrees]
Quadrupole Band Boundaries:
. . . ao
2, ¢ 2 2 : _
0?4+ foi = (90°)%(1 + f) Left: 0/00+990071+9
f=floo,n) =
1.113 — 0.4137 + 0.0034800, left-edge
1.046 4 03187 — 0.0041000, right-edge

o

Breathing Band Boundaries:

Right: 0 +9g0o = 90°(1 + g)
— g =4 left-edge
9= 9 =) 0.227 - 0173y, right-edge
maximum errors ~5 /~2 degrees on left/right boundaries
maximum errors ~8/~3 degrees on left/right boundaries

+ Breathing band:

+ Quadrupole band:
122
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2" Example: Env Stability for Periodic Quadrupole Focusing

Quadrupole Doublet Focusing Lattice:

A
K () (K, =1K,) - ne (0, 1] Occupancy
dy L2,
F Quad o
D Quad —S
NL,2 a € [0, 1/2] Syncopation
R Factor
L dr=a(l-njL, _
Lattice%eriod dy = (1-a)(1-n)L, = 1/2 - FODO

Matched Envelope Equation:

p _ 2Q _ &
7o (8) + Kz (8)T2m(8) T ) ) 0
” _ 2Q _ 612/ —
Tym (5) + fiy(S)'rym(S) Tmm(s) T Tym(s) Tgm(s) 0
Tom (S + Lp) = rem(S) Tem(s) >0
Tym (S + Lp) = Tym () Tym(s) >0
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Using a transfer matrix approach on undepressed single-particle orbits set the
strength of the focusing function for specified undepressed particle phase

advance by solving:
+ See: S.M. Lund, lectures on Transverse Particle Dynamics

Quadrupole Doublet Focusing - piecewise constant focusing lattice

cos og = cos O cosh © + ﬂ6?(cos®sinh® —sin© cosh ©) —
n |k| Ly
(a—ny* 0=
—2a(1 fa)TQQ sin © sinh © 2
4
K] (ke=r) -
dy L2, & ne (0, 1] Occupancy
F Quad o
Iplz D Quad —;
N
R a e [0, 1/2] Syncopation
L, dy = a(l-n)L, Factor
Lattice Period dy = (1-a)(1-N)L, a=1/2 = FODO
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Envelope Flutter Scaling of Matched Envelope Solution

For FODO quadrupole transport, plot relative matched beam envelope excursions
for a fixed form focusing lattice and fixed beam perveance as the strength of
applied focusing strength increases as measured by o

FODO Quadrupole Ly g
' ' ' ' Hz/ oy (s)
1.4 L
1.2 n=05 L,=05m
1.0 Q=5x10"*
- €z = €y = 50 mm-mrad
0.8
o/og
06 45°| 0.20
00 02 04 06 08 10 80" 0.26
110°| 0.32

Lattice Period, s/L,
+ Larger matched envelope “flutter” corresponds to larger oo
- More flutter results in higher prospects for instability due to transfer of energy
from applied focusing
+ Little dependence of flutter on quadrupole occupancy 7
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Quadrupole Doublet Focusing — Matched Envelope Solution
FODO and Syncopated Lattices

a) 6,=80°,1=0.6949, and =12 FODO Focusing:
e el) = () = ()
5 08 ‘ Kyt k(s + Lp) = k(s)

f 0.6 Matched Beam:

5 04 Ex = €y = € = const

® Tam (8 + Lp) = T2m(s)

00 02 04 06 08 1.0
Axial Coordinate, s/L =
xial Coordinate, s/L, Tym (S + Lp) Tym (3)
b) 6,=80%n=06949,and = 0.1 Syncopated
L0 Comments:

T | oen=0s e + Envelope flutter a weak function
& 08 of occupancy 7

S 06) + Syncopation factors « # 1/2
f ’ reduce envelope symmetry and
E 04 can drive more instabilities

00 02 04 06 03 10 + Space-charge expands envelope

Axial Coordinate, .v/Lp
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Quadrupole Focusing — parametric plots of breathing and quadrupole
envelope mode phase advances two values of undepressed phase advance
a) N =0.6949, o=0.1, 65=80° b) N =0.6949, ®=0.1, 6o=115°
Syncopated B: Stable B: Lat. Res. B Conf.Res. B: Stable

Q: Stable Q:Stable  Q: Conf. Res. : Stable

Syncopated

= =)
£ 160 I = W0 T :
2 O, Cont Foc. | Os a | (dashed) B
) 140 (dashed) eb 200 ! o
2 120 O g =
> Z 160F !
Z 100 A 5 A :
< == G (%;?}l{eg?c' i > 1 o cont Foc.
o 80F= 2 120} .. o i (ashed):
E 00 02 04 06 08 1.0 f 00 02 04 06 08 10
G/og G/Gg
! . | Band! !
8 14 ' No Instability s 14 12,9 X@;ﬂ%\,] ke
2] ' 9 \ | '
& 10 Ye Yo & 10 /:ﬁ\\mﬂg
S ’ ' = b /—:‘\ : T -
z z vz Band !
=1 0.6 ' S 06 | ‘(?‘H;mf. Res) 181
O 00 02 04 06 08 10 o 00/ 02 04 06 08 10
G /g —"' ooy

3

1/
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Important point:
For quadrupole focusing the normal mode coordinates are NOT
Sy £ Ory ory < Breathing Mode

ory = g or— < Quadrupole Mode

* Only works for axisymmetric focusin, (ke = Ky = K)
with an axisymmetric matched beam (€z = €y = € )

However, for low 0o we will find that the two stable modes correspond closely in
frequency with continuous focusing model breathing and quadrupole modes even
though they have different symmetry properties in terms of normal mode
coordinates. Due to this, we denote:

Subscript B <== Breathing Mode
Subscript Q <==> Quadrupole Mode

+ Label branches breathing and quadrupole in terms of low 0g branch frequencies
corresponding to breathing and quadrupole frequencies from continuous theory

+ Continue label to larger values of ¢ where frequency correspondence with
continuous modes breaks down
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Quadrupole Focusing — mode instability bands vary little/strongly with
occupancy for FODO/syncopated lattices
a) a=1/2 (FODO), cy=115° b) a=0.1, 5y=115°
FODO 09  (Blue) Syncopated
n= 0.6949 (Black)

0.25 (Green)

Quadrupole Focusing — broad ranges of parametric instability are found for
the breathing and quadrupole bands that must be avoided in machine
operation: Contour parameter ranges of instability to clarify

FODO Lattice Syncopated Lattice
n=0.6949, a=1/2 n=0.6949, a=0.1

0.10 (Red) Breathing and Quadrupole Mode Growth Factors, yz and
0 B Q

—_ — A T 1.0 T
3 3 ln‘yB‘ Q| 1.0 . ! ln‘yg' Q‘ 1.0
220 ‘£ 220 08 = !
g; O 5 -;!-D E e 0.8 ' VY
2180 180 2180 Je g.o ' R el q 1(210
=2 = confluent Res k onfluent Res,
Z 140 Z 140 6'306 Band b‘DO.() Band
< Gg < — ~ X fY
2 100 2 100 © o4 © 04 B
< <
£ 00 02 04 06 08 10 £ 00 02 04 06 08 10 Lattice

c/og c/og 0.2 02| Res

Band
g 5 14 YE'(anfBﬁnd) 0.0
5 5 b -Res. . 0.0 :
8 E m 100 120 140 160 180 100 120 140 160 180
e g G g(deg/period) (deg/period)
: Z 06 ZiBﬁ"d) 0 g/p Opldeg/perio
= =1 t Res.
> © 00 02 Oé /00; 08 10 In |yp,q| = e-folds of growth per period of unstable mode
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Quadrupole Focusing — parametric mode properties of band oscillations

a) 1 =0.6949, 0. = 1/2 FODO b)n =0.6949, o. = 0.1 Syncopated
Breathing Mode Phase Advance, 65
1.0

Parametric scaling of the boundary of the region of instability
Quadrupole instability bands identified:

1.0 ¥ E NE + Confluent Band: 1/2-integer parametric resonance between both breathing and
\ a 08 2 quadrupole modes and the lattice
0.8 8 P
g & . . . .
cos 2 cos EE + Lattice Resonance Band (Syncopated lattice only): 1/2-integer parametric
- g b 2% resonance between one envelope mode and the lattice
b ) 23 bet 1 de and the latt
© 04 i bos 52 . . . . .
;j gi: Estimate mode frequencies for weak focusing from continuous focusing theory:
02 g 02 S
o 5]
—g op =04 =1/203 + 202
0.0 00 I 3
0 30 6 9 120 150 150 0 30 60 90 120 150 180
G(deg/period) 6 (degfperiod) 0Q=0_ =\ /0(2) + 302
d le Mode Phase Ad L. .
10 Quadrupole . ‘.)U © agf’_ vance, Og = This gives (measure phase advance in degrees here):
NE \ NE
08 2 08 2 Confluent Band: Lattice Resonance Band:
g g
= 29 _ o — ©
80_6 % 80'6 25 (U++U_)/2—180 0'+—180
& 4
X = O =8
© 04 t Los iz = \/203 +202 + \/0'8 + 302 = 360° = /208 + 202 =180°
El K
02 S 02 C + Predictions poor due to inaccurate mode frequency estimates from continuous model
00 00 i /§ - Predictions nearer to edge of band rather than center (expect resonance strongest at center)
70 30 60 9 120 150 180 "0 30 60 9 120 150 180 + Cannot predict width of band
Og (deg/period) Gg (deg/period) - Important to characterize to avoid instability
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To provide a rough guide on the location/width of the important FODO confluent
instability band, many parametric runs were made and the instability region

boundary was quantified through curve fitting:
1.0 . : .

Right Edge

0.8F

0.6

04r Left Edge

Tune Depression, o/

0 30 60 90 120 150 180
Phase Advance, oq [Degrees|
Right Edge Boundary:
o +g(n)oo = 90°[1 + g(n)]

Left Edge Boundary:
o® + f(n)ag = (90°)*[1 + f(n)]

1
foy =5 90 =g

+ Negligible variation in quadrupole occupancy 7) is observed
+ Formulas have a maximum error ~5 and ~2 degrees on left and right boundaries
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Pure mode launching conditions for quadrupole focusing

Launching a pure breathing (B) or quadrupole (Q) mode in alternating gradient
quadrupole focusing requires specific projections that generally require an
eigenvalue/eigenvector analysis of symmetries to carry out

+ See eignenvalue symmetries given in S6

Show example launch conditions for:

FODO Lattice n = 0.6949
oo = 80°
/oo =102
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Quadrupole Focusing — projections of perturbations on pure modes varies
strongly with mode phase and the location in the lattice (FODO example)
__ Breathing Mode, Mid-Quadrupole Quadrupole Mode, Mid—Quadrupole

= 010 =010
S 005 S ooos
= 000 < 000
o o
w (Ze] +
- ~0.05 = -0.05
g S
-0.10 -0.10
205 0 o5 1 ® T 05 0 05
VB /T (Mode Phase) Yo/T (Mode Phase)
o 020 o 0.20
- a or,
~7 010 ST ~7 0.10 A
) 5
. w© 0.00,\/\’
g g . \“ ”,’
) & ~0.10 or,
= =
< < 020
TS 5 o5 | U050 05 1
YB/™ (Mode Phase) Yo' (Mode Phase)
0Ty # 01y 0Ty # =0Ty

generally not exact
quadrupole symmetry

generally not exact
breathing symmetry
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Breathing Mode, Mid—Drift Quadrupole Mode, Mid-Drift

0.10

0.10

<
o
S

|
<
=]
&

Radii, 8r;/[./20 L,
Radii, 8r;/[./2Q L,
(=]
3

|
g
—
=)

-1 -0.5 0 0.5 1 1 0.5 0 0.5
Vg /T (Mode Phase) Yo /T (Mode Phase)
o~ 0.20 —— o 0.20
N o
o~ ~7 0.10
“© “ 000
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S
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-1 -05 0 0.5 1 -1 -0.5 0 0.5 1
Yp/m (Mode Phase) Yo/n (Mode Phase)
0Ty 7# 0Ty 0Ty # =0Ty
generally not exact generally not exact
breathing symmetry quadrupole symmetry
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As a further guide in pure mode launching, summarize FODO results for:
+ Mid-axial location of an x-focusing quadrupole with the additional choice 6r§- =0
+ Specify ratio of 07;/d7, to launch pure mode
+ Plot as function of oo for og < 90°
- Results vary little with occupancy 1 or /0

n-=

0.90 (Blue)
06949 (Black)
0.25 (Green)
010  (Red)

Breathing Mode, 6/5;=02

Breathing Mode, 6/c,=0.5

.% 3.0 _% 30
R 25 Br, fr, r 23 Bry 161,
=]
S 20 § 20
%) @
315 515
2 2
10 10
= 15 30 45 60 75 00 M 15 30 45 60 75 00
O (degrees) Gy {degrees)
Quadrupole Mode, G/c,=02 Quadrupole Mode, ¢/c,=0.5
]
% 3.0 % 3.0
o4 2.5 =By I3ry of 2.5 ~8r, /Sry
=]
S 20 § 20
%) B
515 515
: :
10 10
M| 15 3 45 e 75 oo M 15 30 45 60 75 00
Gy (degrees) G (degrees)

SM Lund, USPAS 2018

Accelerator Physics

Specific mode
phase in this case
due to the choice
U !
or, =0= 57.?{
at launch location
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Comments:
+ For quadrupole transport using the axisymmetric equilibrium projections on
the breathing (+) mode and quadrupole (-) mode will NOT generally result in
nearly pure mode projections:

orgy + 06 . Lo
ory = % # Breathing Mode Projection
0ry — 0 .
or_=2 5 "y # Quadrupole Mode Projection

- Mistake can be commonly found in research papers and can confuse analysis of
Supposidly pure classes of envelope oscillations which are not.

- Recall: reason denoted generalization of breathing mode with a subscript B
and quadrupole mode with a subscript Q was an attempt to avoid
confusion by overgeneralization

+ Must solve for eigenvectors of 4x4 envelope transfer matrix through one lattice
period calculated from the launch location in the lattice and analyze
symmetries to determine proper projections (see S6)

+ Normal mode coordinates can be found for the quadrupole and breathing
modes in AG quadrupole focusing lattices through analysis of the eigenvectors
but the expressions are typically complicated

- Modes have underlying Courant-Snyder invariant but it will be a complicated
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Summary: Envelope band instabilities and growth rates for periodic
solenoidal and quadrupole doublet focusing lattices have been described

Envelope Mode Instability Growth Rates

Solenoid (7 = 0.25) Quadrupole FODO ((n_=0.70)
1.0 ! 1.0 ‘
| Injy, | Iy of g 10
0.8 | 0.8 | E
I- YeYo 0.0
attice Confluent Res
\DQ 0.6 DQ 0.6 Band
Y <
© 04 * © 04
Lattice
Res
0.2 :
Band 02
0.0 . ‘ 0.0
100 120 140 160 180 100 120 140 160 180
G (deg/period) Gy (deg/period)
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Summary Discussion: Envelope modes in periodic focusing lattices

*Envelope modes are low order collective oscillations and since beam
mismatch always exists, instabilities and must be avoided for good
transport

+ KV envelope equations faithfully describe the low order force balance
acting on a beam and can be applied to predict locations of envelope
instability bands in periodic focusing

+ Absence of envelope instabilities for a machine operating point is a
necessary condition but not sufficient condition for a good operating point

- Higher order kinetic instabilities possible: see lectures on Transverse Kinetic Theory

+ Launching pure modes in alternating gradient periodic focusing channels

requires analysis of the mode eigenvalues/eigenvectors
- Even at symmetrical points in lattices, launching conditions can be surprisingly
complex

*Driven modes for periodic focusing will be considerably more complex
than for continuous focusing

- Can be analyzed paralleling the analysis given for continuous focusing and likely
have similar characteristics where the envelope is stable.
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lund @frib.msu.edu
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