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S1: Overview

Analyze transverse centroid and envelope properties of an unbunched (0/0z = 0)
beam

r, = pipe radius 5’ Expect for linearly focused

Tmage Charges beam with intense space-charge:

+ Beam to look roughly
elliptical in shape

+ Nearly uniform density

> within fairly sharp edge

Aperture

Transverse averages:

Centroid: ()L = fdQll fdQCC/J_ I
X =(x), x- and y-coordinates
Y = (y) | of beam ‘“‘center of mass”

Envelope: (edge measure) x- and y-principal axis radii

of an elliptical beam envelope

= 2 — X)?
" \/<(:C )11 + Apply to general J1 but base on uniform density L
ry, =2/{(y —Y)2), + Factor of 2 results from dimensionality (diff 1D and 3D)
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Apply the definition of mean-square radius in x:

Pz [d*x (x — X)*fL
[d2x’ [d2z f,

(w-xpP). =1
Take norm:

n(x,y;s) = /dQ:c’ f1 = Density
Then:

&7 [dPx (z— X)*fL
B [d2a’ [d2z f,

For a uniform density elliptical beam:

((z = X)*)1

_|_
_|_

[ nn=const, if (x — X)*/r?
"= o, if (z — X)2/r2
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Beam distribution
function:

fJ_ — fJ_(x7y7$/7y/;S)

_ [d?z (z — X)*n

(y —
(y —

fdQ:z:n

Y)?/re <1
Y)Q/ry? > 1




Transform the elliptical region within the beam to a unit sphere to more
easily carry out the integration in the mean-square radius:

d’x = dxdy = ryr,ndndy
x— X =1rzncosy v

— s 1
y—Y =rynsiny / de---:rxry/ Chb/d????'“
ellipse —T 0
Giving:
d*z (x — X)*n
— X)2), = f
(@~ XP)s = S
A 7 1
- Argry [Z dy cos® ¢ [, dnm n? 2
B N 3Ty, 4

and similar in y to show that:
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/[Aside: Edge Radius Measures and Dimension

The coefficient of rms edge measures of “radii” of a uniform density beam
depends on dimension:

1D: Uniform Sheet Beam:
+ For accelerator equivalent model details see:
Lund, Friedman, Bazouin PRSTAB 14, 054201 (2011)

Lwidth = \/5@2)1/2

2D: Uniform Elliptical Cross-Section:
+ See homework problems

— >1/2
ry = 2(y >1/2

3D: Uniformly Filled Ellipsoid:
+ See JJ Barnard Lectures on a mismatched ellipsoidal bunch and

and Barnard and Lund, PAC 9VO18 (1997)

Axisymmetric Transverse Te = \/g@
rL = \/5/2(3 + 7)1/ D | ry = V5
.= VB2 r. = VB2
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General case uniform density beam:

 For dimension d, the coordinate average along the j = x, y, z

ri =v2+d(i5) .
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Oscillations in the statistical beam centroid and envelope radii are the
lowest-order collective responses of the beam

Centroid Oscillations: Associated with errors and are suppressed to the extent

possible:
* Error Sources seeding/driving oscillations:
- Beam distribution assymetries (even emerging from injector: born offset)

- Dipole bending terms from imperfect applied field optics
- Dipole bending terms from imperfect mechanical alignment

+ Exception: Large centroid oscillations desired when the beam is kicked (insertion or
extraction) into or out of a transport channel as is done in beam insertion/extraction

in/out of rings

Envelope Oscillations: Can have two components in periodic focusing lattices

1) Matched Envelope: Periodic “flutter’” synchronized to period of focusing lattice to
maintain best radial confinement of the beam
+ Properly tuned flutter essential in Alternating Gradient quadrupole lattices

2) Mismatched Envelope: Excursions deviate from matched flutter motion and are
seeded/driven by errors

Limiting maximum beam-edge excursions is desired for economical transport
- Reduces cost by Limiting material volume needed to transport an intense beam
- Reduces generation of halo and associated particle loses
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Mismatched beams have larger envelope excursions and have more collective
stability and beam halo problems since mismatch adds another source of free
energy that can drive statistical increases in particle amplitudes

Example: FODO Quadrupole Transport Channel

Envelope Solution: Matched and Mismatched Beam

T T I ~

L i-f ‘\4— MisMatched Beam (Dashed) J

it i
H i - M

| Black: x—envelope
! Red: y-envelope

w
o

X,Y Envelopes (mm)

N
o

B :: ' \ { ,’: \ I A I
N N AU
l\, : - \ h 3 :I 1 \ I W
\ ! i NG vV
L/ \ . Vo
AN
B Matched Beam (Solid) ) T

10~ .
1 | | l

0 5 10 15
Axial Coordinate, s (m)
+ Larger machine aperture is needed to confine a mismatched beam

- Even in absence of beam halo and other mismatch driven “instabilities’

9
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Centroid and Envelope oscillations are the most important collective modes of an
intense beam

* Force balances based on matched beam envelope equation predict scaling of
transportable beam parameters
- Used to design transport lattices
+ Instabilities in beam centroid and/or envelope oscillations can prevent reliable

transport
- Parameter locations of instability regions should be understood and avoided in
machine design/operation

Although it is necessary to avoid envelope and centroid instabilities in designs, it
is not alone sufficient for effective machine operation

* Higher-order kinetic and fluid instabilities not expressed in the low-order
envelope models can can degrade beam quality and control and must also be

evaluated
- see: USPAS lectures on Beam Physics with Intense Space-Charge
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S2: Derivation of Transverse Centroid and Envelope Equations of Motion

Analyze centroid and envelope properties of an unbunched (9/0z = 0) beam

Transverse Statistical Averages:
Let N be the number of particles in a thin axial slice of the beam at axial

coordinate s. A /\\/

Beam
>

Axial Coordinate, z
| I

Thin Slice, N >> 1 Particles

Averages can be equivalently defined in terms of the discreet particles making up
the beam or the continuous model transverse Vlasov distribution function:

| N
particles: (o)L = N Z

1=1lIslice
o JPxy [P - f)
distribution: ()1 = finUJ_ fdQCC'L fl

* Averages can be generalized to include axial momentum spread
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Transverse Particle Equations of Motion

Consistent with earlier analysis [lectures on Transverse Particle Dynamics], take:

2! 4+ (/Ybﬁb)/x/ + R = — q a¢
(/3 T m%ij 55 c2 Ox | Assume:
; ( Y Bb)/ , B q 5 ’ Unbur}ched beam
+ Y +EyY = ——=555 5 + No axial momentum spread
(75.50) my;, Byc® 9y + Linear applied focusing fields
, 52 52 0 described by Kz, Ky
Vig = @ + 5’—y2 ¢ = —% + Possible acceleration: ¥ 0y
5 need not be constant
P = Q/d X fJ_ ¢|aperture =0

Various apertures are possible influence solution for @ . Some simple examples:
Round Pipe Elliptical Pipe Hyperbolic Sections

() Y A ‘\yA_/
AN T 7“

Linac magnetic quadrupoles, In rings with dispersion: :
. o ; : Electric quadrupoles
acceleration cells, .... in drifts, magnetic optics, ....

V_\

/a—
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Review: Focusing lattices we will take in examples: Continuous and
piecewise constant periodic solenoid and quadrupole doublet

a) Continuous

() h ' (K, =K,= kﬁo = const ) l

Lattice Period Lp

ko
> Occupancy 7
Eb) Periodic Solenoid e [O’ 1]
cob e=x) _
' Solenoid description
carried out implicitly in
. | . | > Larmor frame
"' a2 i, ~ 0 "' * o [see: S.M. Lund lectures on
| o | d=(1-nL, Transverse Particle Dynamics]
} | ©) Periodic Quadrupole Doublet
Kx('s) i ( K.I: =—Ky ) i % L .
T ] I ) Syncopation Factor «
dy L2, 4,
F Quad Hii- e | ] -.b 1
i D Quad | S @ E [O, 5]
I ML,2 |
I A R S [ R, - - 1
- L, - d;=o(l-N)L, = 5 — FODO
Lattice Period . do=({1-)(1lm )Lp
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Distribution Assumptions

To lowest order, due to Debye screening to applied focusing forces, linearly
focused intense beams are expected to be nearly uniform in density within the core

of the beam out to an spatial edge where the density falls rapidly to zero

Y A Charge conservation requires:
|""y A = const

Y |- . , : s
Tz Uniform density within beam:
| P =
5 >
X T

A (x—X)?/r2+(y—Y)?/r2 <1
_ d2 / ~ T Ty’ x Yy
P Y) q/ L { 0,  (z—X)P/r24(y—Y)?/ri>1

)\:q/szcL/dzx’LfL :/d2:13,0 = const

Accelerator Physics
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Comments:
+Nearly uniform density out to a sharp spatial beam edge expected for near
equilibrium structure beam with strong space-charge due to Debye screening
- See: USPAS course on Beam Physics with Intense Space-Charge
+Simulations support that uniform density model is a good approximation for
stable non-equilibrium beams when space-charge is high
- Variety of initial distributions launched and, where stable, rapidly relax
to a fairly uniform charge density core

- Low order core oscillations may persist with little problem evident
- See: USPAS course on Beam Physics with Intense Space-Charge
+ Assumption of a fixed form of distribution essentially closes the infinite
hierarchy of moments that are needed to describe a general beam distribution

- Need only describe shape/edge and center for uniform density beam to fully
specify the distribution

- Analogous to closures of fluid theories using assumed equations of state etc.

- Obviously miss much of physics of true collective response where space charge
waves are likely to be launched.
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Self-Field Calculation

Temporarily, we will consider an arbitrary beam charge distribution within an
arbitrary aperture to formulate the problem.

Electrostatic field of a line charge in free-space

. Ao = line charge
E, — )\0 (XJ_ — X)
= 2meq |x1 — X2 X) =X = coordinate of charge

Resolve the field of the beam into direct (free space) and image terms:

S i and superimpose free-space

El =——=E +E . . . o
ox, solutions for direct and image contributions
Direct Field
1 . op(x)(xe —x1) beam charge

1 (%) 2req / L x, — % |2 plxL) density

Image Field . _ . beam image charge
— 1 . .
Ei (x) = 1 / P27, P (XL)(XLN QXL) p'(X1) = density induced
27 x; — X | on aperture
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// Aside: 2D Field of Line-Charges in Free-Space

v, . B2 o(r) = A2 A= [

€0 27T

Line charge at origin, apply Gauss' Law to obtain the field as a function of the
radial coordinate r :

E, = A E, =rF,
2TeQT

For a line charge at x| = x| , shift coordinates and employ vector notation:

A XJ_—}EJ_
B,

B 27T€0 |XJ_ —}EJ_|2

Use this and linear superposition for the field due to direct and image charges
+ Metallic aperture replaced by collection of images external to the aperture in
free-space to calculate consistent fields interior to the aperture

1
E, = d’ X
1 I / L1 P(XL)

X| —X|

x, —x|?

//
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Comment on Image Fields

Actual charges on the conducting aperture are induced on a thin (surface charge
density) layer on the inner aperture surface. In the method of images, these are
replaced by a distribution of charges outside the aperture in vacuum that meet the
conducting aperture boundary conditions

+ Field within aperture can be calculated using the images in vacuum

+ Induced charges on the inner aperture often called “image charges”

+ Magnitude of induced charge on aperture is equal to beam charge and the

total charge of the images

Physical Images
+ No pipe
+ Schematic only (really continuous image dist)

YA -

SM Lund, USPAS 2018 Accelerator Physics 18




Direct Field:

The direct field solution for an umbunched uniform density beam

in free-space can can be solved analytically
- See: USPAS lectures on Beam Physics with Intense Space-Charge

(7 \
Yoo Uniform density in beam:
A
p = — const
: TTyTy
X X
d A r—X . .
Ly = Expressions are valid only within
Teg (T + Ty)Ts o _
\ v the elliptical density beam -- where
Ed — J they will be applied in taking averages
V' meg (rg +1y)7y

SM Lund, USPAS 2018
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// Aside: Assume a uniform density elliptical beam in a periodic focusing lattice

Elliptical 7 ‘ ___________________________ . Line-Charge:
Beam ry A = gn(s)mry(s)ry(s)
= BN = const  (charge conservation)
3:22?,1 X Bean21 Edge: ;
- . f + =1 (ellipse)
o rz(s)  ry(s)

Free-space self-field solution within the beam (see USPAS: Beam Physics with
Intense Space Charge) is:

* This 1s a non-trivial solution: originally derived in Astrophysics in Classical
gravitational models of stars with ellipsoidal density profiles

\ 72 2
¢ = — =+ + const
2meg | (ry +1y)rs (T +1y)Ty
do A x
— Or  meg (1o + 1y)Ts valid only within the beam!
00 A Y + Nonlinear outside beam
Oy  meo (re +1y)7y y
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Image Field:

Image structure depends on the aperture. Assume a round pipe
(most common case) for simplicity.

Y

A

)\]/
e
s —
rd

9

A = —Ao image charge
2
L p . .
X] = >Xp 1mage location
%0
Will be derived in the

the problem sets.

Superimpose all images of beam to obtain the image contribution in aperture:

E}(x) =

1
2T€EQ

p(XL)(xL — 2%y /1% ]?)

/ d°7|
pipe

[ =i /%L ]?

+ Difficult to calculate even for p corresponding to a uniform density beam

SM Lund, USPAS 2018
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Examine limits of the image field to build intuition on the range of properties:
1) Line charge along x-axis:

y

No loss in generality:
Can always choose coordinates to

/

T'p

h 1' . . .
make charge lie on axis _ Noox, —xt
L7 9 Ix) — v |2
. 0|XL — X
X A= =)\
p(x1) = M(x — XX) i ﬁA
LT X

Plug this density in the image charge expression for a round-pipe aperture:
+ Need only evaluate at x| = XX since beam is at that location

E! (x| = X%) =

A .
2meg(ra/X — X)X

+ Generates nonlinear field at position of direct charge
+ Field creates attractive force between direct and image charge
- Therefore image charge should be expected to “drag” centroid further off
- Amplitude of centroid oscillations expected to increase if not corrected (steering)

SM Lund, USPAS 2018

Accelerator Physics 22




2) Centered, uniform density elliptical beam:
Yy A

A 2/ 2 2/ 2
— x/rs +y°ri < 1
p(xL) { =Ty ;

0, x?/ri+y?fry > 1

Expand using complex coordinates starting from the general image expression:
+ Image field is in vacuum aperture so complex methods help calculation
+ Follow procedures in Multipole Models of applied focusing fields

> 1 (x —iy)"

it ot n—1 _ a2 =)
B =g iB = Y e am g [ R U
n—=2.4....
)Xy n/2
, An! ry—ry
Z=r Ty 1=v-1 T 2me027(n/2 + 1)(n/2)! ( rd )
The linear (n = 2) components of this expansion give:
. by r2 — 2 . A r2 — 2
E = x4yx, E, =— x4yy
8meg Ty 8meg Ty

+ Rapidly vanish (higher order n terms more rapidly) as beam becomes more round
+ Case will be analyzed further in the problem sets
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3) Uniform density elliptical beam with a small displacement along the x-axis:
Y =0 | X|/rp, < 1

Expand using complex coordinates starting from the general image expression:
+ Complex coordinates help simplify very messy calculation
E.P. Lee, E. Close, and L. Smith, Nuclear Instruments and Methods, 1126 (1987)
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Leading order terms expanded in | X|/ Tp without assuming small ellipticity obtain:

| b\ xX\°
Ei — e — X X =

| A xX\°
Fr = — . -

Yy 27’(’607“123 J-y+0 (rp>

Where f and g are focusing and bending coefficients that can be calculated in terms of
X, 7Ty, 7y (which all may vary in s) as:

FocusingTerm:
2
2 2 2 2 2 2 2
re—r X 3 ([r,—r 3 ([r,—T
f = 2 C+ = |1t5 2 o R 2 -
drs rs 2 rs 8 ry
BendingTerm:

2
r2—r2 X2 3 (ra—ry\ 1 [ri—ry
g=1+ + 1+~ + =

4?"3 ’I"ZQ9 4 r2 r2

+ Expressions become even more complicated with simultaneous x- and y-
displacements and more complicated aperture geometries !

* f quickly become weaker as the beam becomes more round and/or for a larger pipe

+ Similar comments apply to g other than it has a term that remains for a round beam
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Comments on 1images:
+Sign 1s generally such that it will tend to increase beam centroid displacements
- Also (usually) weak linear focusing corrections for an elliptical beam
*Can be very difficult to calculate explicitly
- Even for simple case of circular pipe
- Special cases of simple geometry and case formulas help clarify scaling
- Generally suppress by making the beam small relative to characteristic
aperture dimensions and keeping the beam steered near-axis
- Simulations typically applied
*Depend strongly on the aperture geometry
- Generally varies as a function of s in the machine aperture due to changes in
accelerator lattice elements and/or as beam symmetries evolve

Round Pipe Elliptical Pipe Hyperbolic Sections
Y A Y A \\yt/
Nk B> B R

P /_ -

Tp N\

V_\

i
.

I
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Coupled centroid and envelope equations of motion for a

uniform density elliptical beam

Consistent with the assumed structure of the distribution
(uniform density elliptical beam), denote:

Beam Centroid: (phase-space) 7 A
X =(x), X'= (2,
A
YE<y>J_ Y’:<y/>J_ Y 7\
,
Coordinates with respect to centroid: vl \ ,y R o
r=x—X =1 - X' Tx ’
j=y—-Y ;&’:y’—Y’
Envelope Edge Radii: (phase-space) - >
T
re =2/@2) 1 1, =28 /(37
B — 9, 1/2
ry =2/ (P v =200 L/
With the assumed uniform elliptical bea}m, all IPoments can be calculated
intermsof: X X' Y)Y’ Tay Ty Ty, Ty
+ Such truncations follow when the form of the distribution 1s “frozen”
27
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Derive 2" order equations of motion to describe the evolution of the beam
centroid and envelope.
* Derive by taking averages over the equations of motion while applying the
assumed (uniform density) form of the beam distribution
* Cast equations of motion in a form that allows easy interpretation
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Derive centroid equations: First use the self-field resolution for a uniform density
beam, then the equations of motion for a particle within the beam are:

Perveance: q>\ : :
= 353 5 (notnecessarily constant if beam accelerates)
2meomyy;, Bic

average equations using: <:C’> 1= <x>l =X’ etc., to obtain:

Centroid Equations: (see derivation steps next slide) Note: the electric image
. _ _ field will cancel the
X"+ (’Ybﬁb) X+ ke X = Q 2meg (EZ >L coefficient 2meg/A
(%) LA 1 ()0~ %)
7 (/Ybﬁb)/y/ 1% _27‘-60 L _ Ei B 2meg /d%ﬁ - T;L i(;LPXL
o (7605) thl =6 A < yh_

» (E") | will generally dependon: X, Y and Tz, Ty
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1) Derivation of centroid equations of motion
Start with particle equation of motion:

! 0
/" 4+ (/Vbﬁb) 33/—|—/<3x£13 _ q - ¢
(768p) - mapBEc? O
Use (valid within beam): .
Direct Image

_8_qb_ A r— X

— E¢
Or  meg (ry +1y)7rs +Ee
o (Vbﬁb)/ml 1ok — 2Q) (ZE B X) q E
(73) (re + 7y)T% my; By ¢
Perveance: \ Image Field:
_ q i1 o~ P(EL)(xL —X1)
@ = 2megm; B c? Hy = 27eg /d ST E
Giving (valid within beam)
(%Bb) x4+ Kkyx — 2 (x — X) — 4 g
(%519) | (7";,; +ry)Ty my; B2c? "
" (’Ybﬁb)/ 2Q) q i
+ y + K yi— (y—-Y)= E
(V68b) ’ (T2 +1y)Ty m”YngCQ Y
************** Direct Terms ~ Image Terms
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Equation of motion:

(B)" 20)
(75) v et (T + 7y)Te

Take average of equation of motion pulling through terms that depend on on s:

oy, < L o
[d2x, [d?x') f1

q

E
Moy Bb c?

//_|_

(2 —X) =

<$H>J_ -+ < (/Ybﬁb) >J- + <’%CL‘ >J- — <(Tx + Ty) (aj _ X)>J— <m/Yb5bC2 EZ>
7 (765s) 2Q)
()| + (0 By) (") 1 + Keplx) | — (o + )7 (x —X)1
B gA 2Teq ;
- 2meomy; BEc? [ ] (Ee)s
Perganoe: » _Q lzweO] (Y,
 2megmry; BEc?
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/ 2Q
:C"—I—(%ﬁb) 2| 4 k(x| — r—X
< >L (7b6b)< >J- < >J- (Tg;—l-’r'y)’l"x< >J—
2T€Q
— E!
Use:
(x—X), =X—-X=0
! 2T€Y
() Q 3 (Eg )L
+ Analogous equation obtained in y-plane
! [ 271re ]
X"+ (768) X'+ kX = 0 Ei
(u50) Q ) { >¢_
! [ 27re -
Y 4 (/Vbﬁb) V4 kY = 0 B
(768) Y “ A | yh_

SM Lund, USPAS 2018
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2) Derivation of envelope equation of motion
To derive equations of motion for the envelope radii, 7,7, 1* subtract the
centroid equations from the particle equations of motion:

Particle equation:

/
) .
o (/Vbﬁb) 2+ ko — Q (ZC B X) _ 3q ' QE;Z
(/Ybﬁb) (Tx + ry)rx mry, 5[)6
Subtract centroid equation:
1 (/Ybﬁb)/ / 2men ,
At (78) At X =0 A 2
Giving: A= X
=2 -X
! 20T q : -
f” 4 (/Vbﬁb) 53/ 4 /fa:ié . _ E; . E; i
(768) (re +ry)re  myy;BEc? | (B
~1 (Vbﬂb)/ ~/ ~ 2Qy q i i
7 (7630) STy (re +ry)re  my)BEC? By = By ]

SM Lund, USPAS 2018 Accelerator Physics
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Next, differentiate the equation for the envelope radius twice:

ry = 2(7%)/7

4 ~
—> 1" derivative: 71/ = 2(T%') 1 — (T2) 1
@y

2" derivative: 71y, = 22Z")1 + 227) 1 2@F)]

~2\1/2 ~ 2 ~o\3/2
@)y @y @y

_ (@) 16 (@517 — (73] ]

2(z2) /] 2(72) /)3
@2y, 16 [(T%) L (Z7) L — (#3)7 ]
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Define a statistical rms edge emittance:

0 = Aeg s = 4 [0 (82)1 — (27)7]"

Then we have:

i 4<5?53”>L 16[(2%) 1 (7)1 — (22")7 ]
T T rs
~ ~/ 2
_ 4<:c:1: L N eg
T ro

and employ the equations of motion to eliminate " in(2Z") | with steps below

Using the equation of motion:

~// (’Ybﬁb)/ ~/ ~ 2@5;‘ q ; )
o (’Ybﬁb) L Rl (’I“x + Ty)/r:c m/ygBQCZ [ x < a:>_|_]

Multiply the equation by Z, average, and pull s-varying coefficients and constants
through the average terms to obtain
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~ ~ (Vbﬁb)/ ~~/ ~2 2Q<£2>J-
)L+ (765) (TT) L+ Fe(T7) 1 = (T + 7y )T
. = m%ﬂbcg (ZE,) 1 — (Z(E})1).1 ]

Giving
~ =~/ (7686)" 2%, i
< > _|_ (’Ybﬁb) < > _|_ H;;U< >J_ (f,aw_Hny)?nm - m’yb Bb c2 <CUE >
~ ~// (68s)" T2 e Qry/2 _ i
< > T (76By) 4 + Rz Tetry m'YbBbcz <$E >
Using this moment in the equation for 7’/
~~1// <€2
=488k 4 5
then gives the envelope equation with the image charge couplings as:
36
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Envelope Equations:

(’Yb@b) 20) g2 CTEQ }
xlxz — — = = EZ
(’Ybﬁb) —|— feal Ty —+ Ty 7“% SQ L )\ <£U >
(78)" 2Q) 82 CTEY }
_ _ _ 20 s E
fr*y + (0 0) T+ KyTy ——— TS 8C) B (7 y>

» (ZE") | will generally depend on: X, Y and 7'z, Ty

Comments on Centroid/Envelope equations:

+Centroid and envelope equations are coupled and must be solved
simultaneously when image terms on the RHS cannot be neglected
+Image terms contain nonlinear terms that can be difficult to evaluate explicitly
- Aperture geometry changes image correction
+The formulation is not self-consistent because a frozen form (uniform density)
charge profile 1s assumed

- Uniform density choice motivated by KV results and Debye screening

see: USPAS, lectures on Beam Physics with Intense Space-Charge
- The assumed distribution form not evolving represents a fluid model closure
- Typically find with simulations that uniform density frozen form distribution

models can provide reasonably accurate approximate models for centroid and
envelope evolution
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Comments on Centroid/Envelope equations (Continued):
* Constant (normalized when accelerating) emittances are generally assumed
- For strong space charge emittance terms small and limited emittance
evolution does not strongly influence evolution outside of final focus

Bby Yoy A s-variation set by acceleration schedule

Ene = YoPbEr = const
— used to calculate €z, &y

Eny = YbPbey = const
_ qA
 2mmegy BEc?
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Interpretation of the dimensionless perveance Q
The dimensionless perveance:

gA A
- 2megmny; B c?

qnmryr, = line-charge = const

n = beam density

* Scales with size of beam ( A ), but typically has small characteristic values
even for beams with high space charge intensity ( ~ 10 *to 10® common)

+ Even small values of Q can matter depending on the relative strength of other
effects from applied focusing forces, thermal defocusing, etc.

Can be expressed equivalently 1n several ways:
gA qly 2 Iy

B 2meqmy; Bi ¢ B 2megmey; G5 3  (B)3 14

I, = \fpc = beam current
2 ~ ~2
WET 2T
_ _ 4 TreTyn  plaly 14 = dmegme? /q = Alfven current

- 2meompBicd 243 B2

A

Gy = \V/@?1/(meg) = plasma freq.

* Forms based on A, I, generalize to nonuniform density beams
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To better understand the perveance Q, consider a round, uniform density beam with
Te =Ty =T

then the solution for the potential within the beam reduces:

A T2 Y
b= — + + const

2meg | (re + Ty)"“a: (ry + Ty)ry

Ar? n ;
— — cons
Ameq i
A for potential drop
— Ap=09(r=0)—0¢(r=mr) =
¢ = o(r ) — o(r =) A1eg across the beam

If the beam is also nonrelativistic, then the axial kinetic energy &y is

1
E = (9 — 1)me? ~ 577151?02

and the perveance can be alternatively expressed as

gA _qA¢

- 2megm; 7 c? Ey

+ Perveance can be interpreted as space-charge potential energy difference
across beam relative to the axial kinetic energy
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S3: Centroid Equations of Motion
Single Particle Limit: Oscillation and Stability Properties

Neglect image charge terms, then the centroid equation of motion becomes:

/
X" 4 (/Vbﬂb) X'+ ko X =0
(7680)
/
Y//_I_ (/Vb@b) Y/—|—/<; Y =0
(768p) i’

+ Usual Hill's equation with acceleration term

+ Single particle form. Apply results from S.M. Lund lectures on Transverse Particle
Dynamics: phase amplitude methods, Courant-Snyder invariants, and stability
bounds, ...

Assume that applied lattice focusing is tuned for constant phase advances with
normalized coordinates (effective Kz, Ky ) and/or that acceleration 1s weak and
can be neglected. Then single particle stability results give immediately:

1
5[ Tr M (si + Lplsi)| < 1 00z < 180° centroid stability

<> o st o .
%|Tr M, (s; + Ly|s:)| < 1 ooy < 180 1™ stability condition
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//l Example: FODO channel centroid evolution for a coasting beam

o lattice/beam
Mid-drift g ? parameters:
launch: ; Cl) vy B8, = const
X(0) =0mm % -1 0oz = 80°
X'(0)=1mrad = L,=0.5m
-3
n = 0.5

0 2 4 6 8 10 12 14 16

s/L,, Lattice Periods

+ Centroid exhibits expected characteristic stable betatron oscillations
- Stable so oscillation amplitude does not grow
- Courant-Snyder invariant (i.e, initial centroid phase-space area set by
initial conditions) and betatron function can be used to bound oscillation
+ Motion 1n y-plane analogous

/]

Designing a lattice for single particle stability by limiting undepressed
phases advances to less that 180 degrees per period means that the centroid
will be stable

+ Situation could be modified in very extreme cases due to image couplings
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Effect of Driving Errors

The reference orbit is ideally tuned for zero centroid excursions. But there will
always be driving errors that can cause the centroid oscillations to accumulate
with beam propagation distance'

Y 5) s
X// —|_ ( X _|_ _K/'n, ajn
(765) Z Go " Z
Z Kin (S Kn(S) nominal gradient function, nth quadrupole
G = nth quadrupole gradient error (unity for no error; s-varying)
0
A,n, = nth quadrupole transverse displacement error (s-varying)
/// Example: FODO channel centmld w1th uadru ole displacement errors
P q p p
15
Gn ]
Go Z |
Agp =[-05,0.5)mm " Lo o A KR RN K[| B s | solid - with errors
(uniform dist) ~ N A W b L L dashed - no errors
2 -5y
same lattice and SR
initial condition
as previous 13 10 20 30 40 50
s/ L, Lattice Periods ///
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Errors will result in a characteristic random walk increase in oscillation amplitude
due to the (generally random) driving terms
+ Can also be systematic errors with different (not random walk) characteristics
depending on the nature of the errors

Control by:
+ Synthesize small applied dipole fields to regularly steer the centroid back on-axis
to the reference trajectory: X=0=Y, X'=0=Y"
+ Fabricate and align focusing elements with higher precision
+ Employ a sufficiently large aperture to contain the oscillations and limit
detrimental nonlinear image charge effects (analysis to come)

Economics dictates the optimal strategy
- Usually sufficient control achieved by a combination of methods
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Effects of Image Charges

Model the beam as a displaced line-charge in a circular aperture. Then using the
previously derived image charge field, the equations of motion reduce to:

X"+ (95’ PP X 4k, X = QX examine oscillation
(755b) 129 — X along x-axis
X
7“2Cz X2 %X * %XS
p p p
linear correction / \ Nonlinear correction (smaller)

Example: FODO channel centroid with image charge corrections

:'-_

[2

rp, = 30 mm
Q=2x10"4

—

solid — with images
dashed — no images

o

Centroid X [mm]|

same lattice
as previous

|
]

|
w

10 20 30 40 50

s/ L,, Lattice Periods

=
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Main effect of images 1s typically an accumulated phase error of the centroid orbit
+ This will complicate extrapolations of errors over many lattice periods

Control by:
+ Keeping centroid displacements X, Y small by correcting
+ Make aperture (pipe radius 7p ) larger

Comments:
+*Images contributions to centroid excursions typically less problematic than
misalignment errors in focusing elements
+*More detailed analysis show that the coupling of the envelope radii 7z, 7y to the
centroid evolution in X, Y 1s often weak
+ Fringe fields are more important for accurate calculation of centroid orbits since
orbits are not part of a matched lattice
- Single orbit vs a bundle of orbits, so more sensitive to the timing of
focusing impulses imparted by the lattice
+ Over long path lengths many nonlinear terms can also influence oscillation phase
e Lattice errors are not typically known a priori so one must often analyze characteristic
error distributions to see if centroids measured are consistent with expectations
- Often model a uniform distribution of errors or Gaussian with cutoff tails since
quality checks should render the tails of the Gaussian inconceivable to realize
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S4: Envelope Equations of Motion

Overview: Reduce equations of motion for 7, 7y
+ Find that couplings to centroid coordinates X Y are weak
- Centroid 1deally zero in a well tuned system
*Envelope eqns are most important in designing transverse focusing systems
- Expresses average radial force balance (see following discussion)
- Can be difficult to analyze analytically for scaling properties

- “Systems” or design scoping codes often written using envelope equations,
stability criteria, and practical engineering constraints

+ Instabilities of the envelope equations in periodic focusing lattices must be
avoided in machine operation
- Instabilities are strong and real: not washed out with realistic distributions
without frozen form
- Represent lowest order “KV” modes of a full kinetic theory
*Previous derivation of envelope equations relied on Courant-Snyder
invariants in linear applied and self-fields. Analysis shows that the same
force balances result for a uniform elliptical beam with no image couplings.

- Debye screening arguments suggest assumed uniform density model taken
should be a good approximation for intense space-charge
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KV/rms Envelope Equations: Properties of Terms

The envelope equation reflects low-order force balances:

7 3(%51)), / QQ 5% o
_|_ e + RgTx - 3 = 0
(768) Tz + Ty Tz
2
" (’Ybﬁb), /| QQ Sy L
r, + ry T KyTy - — =0
b)) T ety T
Applied Applied Space-Charg Thermal
Streaming Acceleration  Focusing Defocusing Defocusing
Terms: Inertial Lattice Lattice Perveance = Emittance

The “acceleration schedule” specifies both 758, and A
then the equations are integrated with:

VoBbEx = const normalized emittance conservation
Vb Pbey = const (set by 1nitial value)

_ gA
- 2meomy) BEc?

specified perveance
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As the beam expands, perveance term will eventually dominate emittance term:
[see: Lund and Bukh, PRSTAB 7, 024801 (2004)]

Consider a free expansion (kz = Ky = 0) for a coasting beam with /3, = const

Initial conditions: Cases:
r :C(Sz) — Ty(Sz') Q 652,; Space-Charge Dominated: €, = 0
ri(si) = ry,(s;) =0 ra(si) 2T§3(Si) Emittance ~ Dominated: ¢ =0
€
Q=—F5~=107°
rz(si)

3.0

[ r, (s)/ r, ( Si) See next page: solution is
= 2.5 i Space- Charge analytical in bounding
2 | Do limits shown
A _ ominated
Q. : / | Parameters are chosen such
LE 1.5 4 x(S) r X(Si) { thatinitial defocusing
B Emittance | forces in two limits are
1.0 | Dominated | €dqual to compare case

00 0.1 02 03 04 05
Axial Coordinate, s—s;, (m)
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For an emittance dominated beam in free-space, the envelope equation becomes:

Q g2 e

/! s
—<<_:§,y — Tj__g)):() J =,y
Ty + Ty T:B,y ”l“j

The envelope Hamiltonian gives:

1 /2 5?

—r° + —= = const
J 2

2 27“j

which can be integrated from the initial envelope at s = s; to show that:

Emittance Dominated Free-Expansion (@ = 0)

27" (s;) r2(s;)r’?(s;) | €2
ri(s) =ri(si) |1+ —2——(s—s;)+ |1+ -2 / I (5 —s;)2
J J \ ri(s;) 5? r;-l(si)
] =y
Conversely, for a space-charge dominated beam in free-space, the
envelope equation becomes:
Q g2 rl — @ 0 1
N - _ 1
! r’ =0
50
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The equations of motion

7 Q_
T+
r’ =0

can be integrated from the initial envelope at s = s; to show that:
+ T— equation solution trivial 1
+ T+ equation solution exploits Hamiltonian 57“2 — @ Inry = const

Space-Charge Dominated Free-Expansion (e, = £, = 0)
2
12( . / , r’2(s;) _ G,
ri(s) =ri(s;)exp (ngz) + lerfi™! {erﬁ T:;%)] + ?e 50 (:+(si3) }] )
r(s) =r(si) +r_(si)s = si) Imaginary Error Function
1 erf(iz) 2 [~
ry = §(TCU 4+ ry> erﬁ(z) = ; \/_ dt eXp(tQ)
1 =+v—1

The free-space expansion solutions for emittance and space-charge dominated
beams will be explored more in the problems
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S5: Matched Envelope Solution: Lund and Bukh, PRSTAB 7, 024801 (2004)

Neglect acceleration (7»3» = const) or use transformed variables:

7 — QQ B Ei B
r(8) + K (s)re(s) ry(s) +ry(s)  ri(s) ’
17 — 2 B 82 B
() )y ($) = S T )
Tx(S + Lp) — TLU(S) 7“5,;(5) =Y
ry(s + Ly) = 1, (s) ry(s) > 0

Matching involves finding specific initial conditions for the envelope to
have the periodicity of the lattice:

Find Values of: Such That: (periodic)
/ / /
Tx\Si Tz \Si re(Si + Lp) = 12(8; re(8i + Lp) = 1,(8;
(si) | (si) > | = p) = ra(si) / ( p) / (si)
ry(si) Ty (84) ry(si + Lp) = 7y(5;) ry(8i + Lp) = 1,(8:)

* Typically constructed with numerical root finding from estimated/guessed values

- Can be surprisingly difficult for complicated lattices (higho ) with strong space-charge
+ [terative technique developed to numerically calculate without root finding;

Lund, Chilton and Lee, PRSTAB 9, 064201 (2006)

- Method exploits Courant-Snyder invariants of depressed orbits within the beam
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Typical Matched vs Mismatched solution for FODO channel:

Matched Mismatched
Matched Beam Envelope 40 Envelope Solution: Matched and Mismatched Beam
40 — T T 7 T T T T ] T T T 1 L e
L r ] L r.. i "<— MisMatched Beam (Dashed) I N
x. Tx i 3 "

g g
[7)] [}
L (O]
o o
o o
H] (o
> >
> >

N
(=]
|
1

L - - Matched Beam (Solid)

10 - 10 i

|
0 5 10 15 0 5 10 15
Axial Coordinate, s (m) Axial Coordinate, s (m)

The matched beam is the most radially compact solution to the envelope
equations rendering it highly important for beam transport
+ Matching uses optics most efficiently to maintain radial beam confinement

SM Lund, USPAS 2018 Accelerator Physics 53




The matched solution to the KV envelope equations reflects the symmetry of the
focusing lattice and must, in general, be calculated numerically

Edge Radu r; and r, (mm)

Envelope equation very nonlinear

rz(s+ Ly) = 75(5)
ry(s+ Lp) = ry(s)

Solenoidal Focusing

(Q = 6.6986 x 10™%)

Axial Coordinate &/Ly,

SM Lund, USPAS 2018

o/og = 0.2

Edge Radii r; and v, (mm|

Parameters
L,=0.0m, o9 = 80°, n=0.5

£, = 50 mm-mrad

Perveance Q iterated to
obtain matched solution
with this tune depression

FODO Quadrupole Focusing
(Q = 6.5614 x 10™%)

| o e, .-..-__..
12 - / \ /
| T
- . o
e AN “
10 h‘a P
- R"\.\ f.____.-"'
a i"H \\\-‘ f{___
B &
Moy = —H_P
0 0.z o1 Tols . o.e 1

Axial Cloordinate s/L,
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Symmetries of a matched beam are interpreted in terms of a local rms

equivalent KV beam and moments/projections of the KV distribution
[see: S.M. Lund, lectures on Transverse Equilibrium Distributions]

MLALC A DAl TIYCIOPRE dnd MOCLsINE CUncLOn

T —
E 12}
g
°7 C
B 6L
Py —— I |
- ;
) . 2 o o2 i 04 i T 06 i 0.8
PI'OJ ection I | Axial Coordinate!(Lattice Periods) |
b Y
X_y X X

area: mT,T, 7 const

x-X'
area: e, = const
(CS Invariant)

|

Y-y

area: me, = const
(CS Invariant)
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S6: Particle Orbits with Space-Charge

The envelope equation reflects low-order force balances

DR 2Q é _ 0 Matched Solution:
x xlx Tx‘|'74y ngg T$(8—|—Lp):7°x(8)
,, 00 E o nlrL)=n
Ty + KyTy — T 3 =
Ty + Ty Ty

Applied Space-Charge Thermal
Focusing  Defocusing Defocusing
Terms: Lattice Perveance = Emittance

Comments:
+ Envelope equation 1s a projection of a 4D (linear field) invariant distribution

- Envelope evolution equivalently given by moments of the
4D equilibrium distribution
+ Most important basic design equation for transport lattices with high space-charge
intensity
- Simplest consistent model incorporating applied focusing,
space-charge defocusing, and thermal defocusing forces
- Starting point of almost all practical machine design!
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The matched solution to the envelope equations reflects the symmetry of the
focusing lattice and must in general be calculated numerically

Matching Condition Example Parameters

raz(s+ Lp) = ra(s)

Ex = €y = 50 mm-mrad

L,=05m, o9=80° n=0.5

ry(s 4+ Lp) = 1ry(s) o/og = 0.2
Solenoidal Focusing FODO Quadrupole Focusing
(Q = 6.6986 x 10™%) (Q = 6.5614 x 10™%)
_ | _ A N S |
El N o
.% é'" B; - , “xh\-h - !f_,,-"'/f
Eﬂl E ':.. Hr = —Hy
&b w4t
& £ S S S

Axial Coordinate s/L,

The matched beam is the most radially compact solution to the envelope
equations rendering it highly important for beam transport
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Particle orbits in the presence of uniform space-charge can be strongly

modified — space charge slows the orbit response:

The particle equatio

/7
T + KpX

y// 4 Kyl

ns of motion:

_ q 99
m~; B c? Ox
q 09

my, By Oy

become within the beam:

meg (T + 7y) 72

op A
- dr
o A
- =

z'"(s) + <

Fal8) =

4 2@

2Q)

ro(s) + 1y (s)|ra(s)

\

y'(s) + s

\\

508) = &) Ty (5 (6)

Here, Q 1s the dimensionless perveance defined by:

gA

— const

Q_ZT('

3 22
eom; B c?
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If we regard the envelope radi1 7z, Ty as specified functions of s, then these
equations of motion are Hill's equations familiar from elementary accelerator
physics:

2" (s) + Ky (s)z(s) =0

V' (5) + K5 (5)y(s) = O

kS (5) = Ky(s) — %
z () 2(3) 75(8) + 7y(8)|re(s)

2Q)
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Review (1): The Courant-Snyder invariant of Hill's equation
[Courant and Snyder, Annl. Phys. 3, 1 (1958)]

Hill's equation describes a zero space-charge particle orbit in linear applied
focusing fields:

2" (s) + k(s)x(s) =0

As a consequence of Floquet's theorem, the solution can be cast in
phase-amplitude form:

1
/ S
$(8> — AZUJ(S) COS %D(S) ¢ (S) — UJ2(S)
where w/(s) 18 the periodic amplitude function satisfying
1

w" (s) + k(s)w(s) — =0

w?(s)
w(s + L,) = w(s) w(s) >0

1 (s) is a phase function given by
° ds
“e) =i+ [ o

A, and %¥: are constants set by initial conditions at s = s;

SM Lund, USPAS 2018 Accelerator Physics
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Review (2): The Courant-Snyder invariant of Hill's equation
From this formulation, it follows that

x(s) = A;w(s) cosy(s) 1

A w?(s)
o(s) sin 4(s)

z'(s) = A;w'(s) cosp(s) —

= A; cos

SHRS

wx' —w'zr = A; siny

square and add equations to obtain the Courant-Snyder invariant

2
(E) + (wx’ —w'z)? = A? = const
w

+ Simplifies interpretation of dynamics
+ Extensively used 1n accelerator physics
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Phase-amplitude description of particles evolving within a uniform density beam:

Phase-amplitude form of x-orbit equations: initial(conditior)ls yield:
S =3S;
r(s) = Agiwe(s) cos P, (s) A,; = const
A _ — ..
7' (s) = Agiw’ (s) cos ), (s) — ——— sin,(s) Vi = Puls = 5i)
wx(s) — const
where
20) 1
W (s) + Ky (8)wg(s) — Wy (8) — =0
el Y e B P P R T
Wy (s + Ly) = wy(s) wy(s) >0
® ds
elo) = v+ | s
identifies the Courant-Snyder invariant
2
<i> + (wya” — wyx)? = A3; = const
Wy
Analogous equations hold for the y-plane
62
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The KV envelope equations:

Define maximum Courant-Snyder invariants:

ex = Max(AZ)) T =
£y = MaX(Azi)

Values must correspond to the beam-edge radii:

rz(8) = VEzwa(s)
ry(s) = Eywy(s)

The equations for w_and w_can then be rescaled to obtain the familiar

y

KV envelope equations for the matched beam envelope

5 (8) + Ko (8)ra(s) —

TZ(S) + Ky (8)ry(s) —

ro(s+ Lp) = r2(s)
ry(s+ Lp) = 1y(s)

SM Lund, USPAS 2018

cos Y, =1
Am’wm COS %; — Ty = ALU max Wy
A
Elliptical ~_ofemme ey
Beam ry
Edge Ellipse: -
2 o2
% + % =1
2Q) e2 .
re(s) +ry(s)  ri(s)
20) er )
re(s) +ry(s)  1(s)
rz(s) >0
ry(s) >0
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Contrast: Review, the undepressed particle phase advance calculated in
the lectures on Transverse Particle Dynamics

The undepressed phase advance is defined as the phase advance of a particle in

the absence of space-charge (Q = 0):

*Denote by 90z to distinguished from the “depressed” phase advance o,

in the presence of space-charge

1
w(,),:c T+ ReWor — —3~ = woz (s + Lp) = woe(s)
Woy,
00z = / 3
Sq Wiy,
This can be equivalently calculated from the matched envelope with Q = O:
2
g _
Fog + KaToz — 5 =0 roz(s + Lp) = 102(5)
"0u roz > 0
3i+Lp dS Ox
O0x — 5:1;/ 5
Si Y

+ Value of
SM Lund, USPAS 2018

is arbitrary (answer for 0oz is independent)
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Equation of motion for x-plane “depressed” orbit in the presence of space-charge:

1" B 2Q) (s) —
o) G T, )
7 _ 2¢) wa.(s) — ! —
wels) +rals)a(s) — o @@ ) T i O
® ds Ty
/(5) + Ko (8)7(8) = iy — 7oty = O

All particles have the same value of depressed phase advance (similar Eqns 1n y):

sitle g
<%zwAa+@»~%@»=%/‘

()
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Depressed particle x-plane orbits within a matched KV beam in a periodic
FODO quadrupole channel for the matched beams previously shown

Solenoidal Focusing (Larmor frame orbit):
Undepressed (Red) and Depressed (Black) Particle Orbits

% x-plane orbit:
: y=0=y
Both Problems
00 25 5 75 10 125 15 175 20 'Medlog.
FODO Quadrupole Focusing:lLattice Periods 5
Undepressed (Red) and Depressed (Black) Particle Orbits J_ = 0.2
o’2—mmM™—mmm———mmmm™@™M@MmMm j 0
2 0.01 x-plane orbit:
D O ¢ 0=
5 _0.01f i y=U=
-0.02f
00 25 5 75 10 125 15 175 20
Lattice Periods ”
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Clarification Comment on previous plots:

For the shown undepressed orbit (no beam space-charge), the particle 1s
integrated from the same initial condition as the depressed orbit (in
presence of space-charge). In this context the matched envelope which
1s shown including space-charge has no meaning.
* A beam rms “edge” envelope without space-charge 7o, could also
be shown taking

oz (8) = \/ExWoz(8) = \/€xP0x(5)

* This envelope will be different than the depressed beam.
The undepressed particle orbit can be calculated using phase-amplitude
methods or by simply integrating the ODE describing the particle
moving in linear applied fields:

" + kg (s)r =0

x(s =s;) = x;

, Same Initial condition as depressed

r(s=s;) =ux
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Depressed particle phase advance provides a convenient
measure of space-charge strength

For simplicity take (plane symmetry in average focusing and emittance)
00z = O0oy = 00 Ex =&y =€
Depressed phase advance of particles moving within a matched beam envelope:

sitle (g sitle g
o=c¢ =
/s - rE(s) ./s ry(s)

7

Limits:

1) lelino 0 =00 Envelope just rescaled amplitude: 7“3; = 811}833
) limo = 0 Matched envelope.exis.ts with € = ( |
e—0 Then € = 0 multiplying phase advance integral
Normalized space charge strength Cold Beam
O/ oo — 0 (space-charge dominated)

e—0

0<o/og <1

Warm Beam
(kinetic dominated)

Q—0

Accelerator Physics

o/og — 1
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For example matched envelope presented earlier: repeat periods

Undepressed phase advance: 4, = 80° 4.5
Depressed phase advance: 45 =16° — 0/0p=0.2 22.5
Solenoidal Focusing (Larmor frame orbit): gggﬁisgfgé

phase advance

Undepressed (Red) and Depressed (Black) Particle Orbits

& x-plane
D orbit
= :
y=0=y
00 25 5 75 10 125 15 175 20

<« Lattice Periods

4.5 periods

- >

22.5 periods
Comment:

All particles in the distribution will, of course, always move in response to both applied
and self-fields. You cannot turn off space-charge for an undepressed orbit. Itis a
convenient conceptual construction to help understand focusing properties.
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The rms equivalent beam model helps interpret general beam evolution in
terms of an “equivalent” local KV distribution with uniform density

Real beams distributions 1n the lab will not be KV form. But the KV model can
be applied to interpret arbitrary distributions via the concept of rms equivalence.
For the same focusing lattice, replace any beam charge p(x,y) density by a
uniform density KV beam of the same species (g, ™ ) and energy ( 3, ) in each

axial slice (s) using averages calculated from the actual “real” beam distribution

with: < > . fdzill fd2 e f

f | = real distribution

fdza:Lfd%:L fJ_

rms equivalent beam (identical 1st and 2nd order moments):

Quantity KV Equiv. Calculated from Distribution
Perveance Q = ¢ [d*x) [d*2', [ [/[27eony; Bic?]
r-Env Rad 7, = <x2>i/ °

y-Env Rad 7, = 2<y2>1l/ °

r-Env Angle 1/, = 2(xx’) ) / <x2>1l/ ’

y-Env Angle 7, = 2(yy) 1 /{y?))?

r-Emittance ¢, = 4[{x?) | (2"?) | — (z2’) ]V/?
y-Bmittance &, = 4[(y*) L) L — (yy')1]"?

SM Lund, USPAS 2018
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Comments on rms equivalent beam concept:

+ The emittances will generally evolve in s
- Means that the equivalence must be recalculated in every slice as the
emittances evolve
- This evolution 1s often small
* Concept 1s highly useful
- Unfiorm density KV equilibrium properties well understood

and are approximately correct to model lowest order “real” beam properties
- See, Reiser, Theory and Design of Charged Particle Beams (1994, 2008)
for a detailed and instructive discussion of rms equivalence
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S7: Envelope Perturbations: Lund and Bukh, PRSTAB 7, 024801 (2004)

In the envelope equations take:

Envelope Perturbations: Driving Perturbations:
2(5) = Tam(s) + 61205 2(5) = a(s) & 6a ()
ry(s) = Tym(s) + 0ry(s) iy (8) = sy 5) + Oy (s
Q — Q -+ 6@(8) Perveance
Matched  Mismatch + 6e,(s)
Envelope Perturbations z 7 Ea A Emittance
£y — €y + 0gy(s)

Perturbations in envelope radii are about a matched solution:

Fom (5 + Lp) = Tem(s)  Tom(8) >0

Fym (8 + Lp) = rym(s) rym(s) >0

Perturbations in envelope radii are small relative to matched solution and driving
terms are consistently ordered:

ram(s) > |072(s)] Amplitudes defined in terms of
rym(8) > |07, (s)| producing small envelope perturbations

+ Driving perturbations and distribution errors generate/pump envelope perturbations
- Arise from many sources: focusing errors, lost particles, emittance growth, .....
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The matched solution satisfies:

+ Add subscript m to denote matched envelope solution and distinguish from
other evolutions

Te — Tzm For matched beam envelope

Ty — Tym with periodicity of lattice

Assume a coasting beam with 753, = const or that emittance is small and the
lattice 1s retuned to compensate for acceleration to maintain periodic Kz, Ky

, j 2Q) -
o) 4 e ) @) @)
" B 2Q &
o ) G @) )
Pem (S + Lp) = Tum(s) Tem(8) > 0
rym (s + Lp) = 1ym(S) rym(s) >0

Matching is usually cast in terms of finding 4 “initial” envelope phase-space

values where the envelope solution satisfies the periodicity constraint for specified
focusing, perveance, and emittances:

rmm(si) Tzlcm(sz')

Tym (Si) T;m(si)
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Linearized Perturbed Envelope Equations: (steps on next slide)
» Neglect all terms of order 42 and higher: (57“33)2, 0Tz 0Ty, 0QQOTy, - -+

20) 3e?
1/ xT
Ory, + K0Ty + o o2 (0rgy + Ory) + 1 —L 7,
2 2,
— — Ty 0Ky + 0Q) + 2 0,
Tzm + Tym r:cm
20) 3e2
Or! 4 Ky 01y + or, + or —Lor
VTR (rem o+ 7“:yfm)Q( 2 Tam
2 2ey
B _Tym5’£y " T'zm =+ Tym 5Q i r?:jm 583!
Homogeneous Equations:
+ Linearized envelope equations with driving terms set to zero
2 3e?
Or! + K Ory, + ¢ (01 + 01y)) + R 29 A"
(ram + Tym)? i,
2Q 3¢’
or’! 0 Oory + 0 —yé =0
Ty T KyOTy + (T —|_Tym)2( ry +0ry) + o Ty =
74
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Derivation steps for terms in the linearized envelope equation:

!/ !/ !/
r. —>T... +O0r..

KTy —>(Kg + 0Kz ) (Tem + 07%)

~ KpTom + KpOT g 4 0Ky Ty @(52)
20) + 20Q)

' Tom + Tym + 0Ty + 07y
20) [1 6ry + 0Ty, ]

Y

Toem T T'ym Tem T+ T'ym
20
+ ¢ + O(6%)
T'em + rym

(ex +0e,)°

Inertial:
Focusing:
2
Perveance: Q
Tre + Ty
22
Emittance: L
fr.3

SM Lund, USPAS 2018

' (rem + 012)3

2¢..06 g2 or
~ 2 z |1 -3—= O(6?
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Collect all terms and neglect higher order:

Ty, (8) + Kz (8)Tem(s) — rm<s>2§rym<s> ol

2 3e2
Or! + K0Ty + ¢ (07 + dry) + &5%
(Tﬂ?m _l_ Tym)2 Tém
2
— _T:Uméf'i:c +
Tem T T'ym
Use the matched beam constraint:
7 . 2Q _ £z _
Tem(8) + Ka(8)ram(8) — oy —m ey =0
Giving:
2 3e2
Or! + K0T, + @ (01 + dry) + &5%
(Tazm —|_ 7G?JWL)Z Tim
2
= —TpmO0Ky +
Tem T T'ym

+ analogous equation in y-plane
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Martix Form of the Linearized Perturbed Envelope Equations:

d
—0R+K:-0R =0P
ds
0T,
SR = 0T Coordinate vector
| ory
6Tg,; Coefficient matrix Has per10d1Cl‘[y
o -1 0 0 | 2Q of the lattice period
K = kxm 0 kOm 0 (Tiﬁm + Ty’m)Q
-1 0 0 0 -1 £2 .
0
— —5&33?“'1””7’ —I— 2?”:cm5‘|6;27“ym + 26905633
oP = 0 Driving perturbation vector
—0KyTym + 2 xm+rym -+ 2€yj;y
Expand solution into homogeneous and particular parts:
0Rj, = homogeneous solution
SR = 6R;, + 6R,, h s
0R, = particular solution
d d
d—éRh—l—K )R, =0 £(5R + K -oR, =0P
S
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Homogeneous Solution: Normal Modes

+ Describes normal mode oscillations

+ Original analysis by Struckmeier and Reiser [Part. Accel. 14, 227 (1984)]
Particular Solution: Driven Modes

+ Describes action of driving terms

+ Characterize in terms of projections on homogeneous response (on normal modes)

Homogeneous solution expressible as a map:

OR(s) = Mc(s|s;) - 0R(s;) 1;02\V 4x14 S'}]Steifn;i°ll)11'1t analo.gous.to the
5R( 3) — (5% 57°/x 7 5ry, 5r’) XZ analysis .0 111's equation via
¢ Y transfer matrices: see S.M. Lund
Me(S’Si) = 4 x4 transfer map lectures on Transverse Particle Dynamics

Eigenvalues and eigenvectors of map through one period characterize normal
modes and stability properties:

Me(si —+ Lp|87;) . En(Sz) = )\nEn(Sz)

Stability Properties Mode Expansion/Launching
4
NS 0, — mode phase advance (real) SR(s;) = Z anE, (s:)
n = In Yn — mode growth/damp factor (real) n=1
o, = const (complex)
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Eigenvalue/Eigenvector Symmetry Classes:

a) Stable
ImAi, A

¢) Unstable, Lattice
Resonance

Im A, A

Eigenvalues

—icsl
k3=l/7ul=7tl*=e.
. _102
7L4= 1/7\,2 = 7\.2* =e

Eigenvalues
icl

—icl

in
14 = 1/12 = (l/yz)e

Eigenvectors

Eigenvectors
By
fgz (real)
By =By

]§4 (real)

b) Unstable, Confluent

Resonance

Im A,

Eigenvalues

IO'l
kl =7v,€ _
10}
Ay = 1/A% = (l/yl)e‘
—lGl
Ay = 1/4 = (1/&_/1)6-

—IGl

d) Unstable, Double Lattice

Resonance

ImA, A

Eigenvalues
i
A o=7,e

in

=
9
|

N

Symmetry classes of eigenvalues/eigenvectors:
+ Determine normal mode symmetries

+ Hamiltonian dynamics allow only 4 distinct classes of eigenvalue symmetries

- See A. Dragt, Lectures on Nonlinear Orbit Dynamics,
in Physics of High Energy Particle Accelerators, (AIP Conf. Proc. No. 87, 1982, p. 147)

+ Envelope mode symmetries discussed fully in PRSTAB review
+ Caution: Textbook by Reiser makes errors in quadrupole mode symmetries and
mislabels/identifies dispersion characteristics and branch choices

SM Lund, USPAS 2018

= 17k = (177e”

zy
>
o3

>
(98]

|

= /%y = (1/7,)e™

>
N
|
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Eigenvectors

Eigenvectors
f; 1 (real)
E‘Z (real)
E}, (real)

E4 (real)
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Pure mode launching conditions:

Launching conditions for distinct normal modes corresponding to the
eigenvalue classes 1llustrated:

Ag = mode amplitude (real) f = mode index
¢ = mode launch phase (real) C.C. = complex conjugate
Casc Modec Launching Condition  Lattice Period Advance

(a) Stable 1 - Stable Osc.  |6Ry = A1 E; + C.C. M.6Ry(¢1) = 6R ()1 + 0y)

2 - Stable Osc. Ry = Ase™2E,y + C.C. M 0R,(ths) = dRo(1hy + o)
(b) Unstable 1- Exp. Growth [dR; = A" E; + C.C. M.0R(¢)1) = v1dR((¢)1 + o)
Confluent Res. 2 - Exp. Damping | Ry = Aye™?Ey 4+ C.C. MORo(v2) = (1/v1)0Ra(12 + 1)
(c) Unstable 1 - Stable Osc. Ry = AjeVE| + C.C. M.0R,(¢) = 6R (¢ + o)
Lattice Res. 2 - Exp. Growth |dRs = AsEs MRy = —dR,

3 - Exp. Damping | dR3 = A3E, M.0R; = —(1/72)0R;
(d) Unstable 1- Exp. Growth |éR; = AE, M. R, = —v16R,
Double Lattice 2 - Exp. Growth |dRy = AEs MR, = —dR,
Resonance 3 - Exp. Damping | dR; = A3;E3 M.OR5; = —(1/7)0R3

4 - Exp. Damping | R, = A4E4 M.0R, = —(1/v:)0R,

OR, = 0Ry(s;) Ep=E(s;) M. = Mc(s; + Ly|s;)

Al[El (5)e?1(5) L EX(s)e™ ™1 ()] 4 Ay[Eq(s)e™2(8) + E3(s)e™¥2(%)], cases (a) and (b)
SR(5) = { A1 [E1(s)e () + Ei(s)e™ 1)) + AEq(s) + AsEy(s), case (c)
A1E;(s) + AsEx(s) + AsEs(s) + AsE4(s), case (d)

SM Lund, USPAS 2018 Accelerator Physics 80




Decoupled Modes

In a continuous or periodic solenoidal focusing channel

o) = iy () = A(s)
with a round matched-beam solution

Ex = €y = € = const

Tem(S) = Tym(8) = rim(s)
envelope perturbations are simply decoupled with:

0Ty + 0T
Breathing Mode: or, = T : Y
Quadrupole Mode: or = 0Ty ; 0Ty

The resulting decoupled envelope equations are:

Breathing Mode: |---]dry = Ky dry

-
orlf + [&+%+Si Sry = —1m, (5'@”5%) +TL5Q+ 2 (55x+55y>

4 3
T, (s 2 rs 2

Quadrupole Mode: ] or- = k0T
or’ + [/{%— g] or_ = —r,, (5/% _ &{y) + 2¢ (5897 — 559)
] 2

3
2 o
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Graphical interpretation of mode symmetries:

Breathing Mode:

Quadrupole Mode:

0Ty — 0Ty,
2

or_ =

T r
2
k. =K+ 33—
4
m

SM Lund, USPAS 2018

y T Breathing Mode (+)
Quadrupole Mode (-) Envelope
Envelope _——==—__, / 8 _______ é Breathing
NN L ﬁ’______rx Mode (+)
_ Quadrupole
Sry B _er Mode (-)
T N R -
>
X
Matched Beam PR ——
Envelope Fm Oy
Quadrupole and

Breathing Modes

Breathing Mode Linear Restoring Strength

Quadrupole Mode Linear Restoring Strength
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Decoupled Mode Properties:

Space charge terms ~ Q only directly expressed in equation for or,(s)
* Indirectly present in both equations from matched envelope r,(s)

Homogeneous Solution:
* Restoring term for or,(s) larger than for or (s)
- Breathing mode should oscillate faster than the quadrupole mode

2 2
/<;+:/<;+%—|—357m>/<;_:/<;—|—357m

Particular Solution:
* Misbalances in focusing and emittance driving terms
can project onto either mode

- nonzero perturbed k,(s) + k,(s) and £,(s) + ¢€,(s)
project onto breathing mode
- nonzero perturbed K, (s) - k,(s) and g(s) - €,s)
project onto quadrupole mode
* Perveance driving perturbations project only on breathing mode
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Previous symmetry classes greatly reduce for decoupled modes:
Previous homogeneous 4x4 solution map:
OR(s) = Mc(sl|s;) - 0R(s;)
OR(s) = (0ry, 07, 014, 57“:;)
M, (s|s;) = 4 x 4 transfer map

Reduces to two independent 2x2 maps with greatly simplified symmetries:

OR = (ory,0r'y,0r_,orl)

Ma(si+ Lyls) = [N B ]

0 M_(Si —|—Lp‘81)

HereM 4 denote the 2x2 map solutions to the uncoupled Hills equations for dr. :

ory + ktory =0

o Q 382 57}; . N 57“i

Ky = K+ 7",'271 + ?";ln (ST;: — M:l:(8|32) 574;; i
B 3e?

K =K+ %
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The corresponding 2D eigenvalue problems:

Mj:(SZ' + Lp|8i) . En(SZ) = )\:I:En(sz)

Familiar results from analysis of Hills equation (see: S.M. Lund lectures on

Transverse Particle Dynamics) can be immediately applied to the decoupled case,
for example:

1
§|TT M (s; + Lpls;)| <1 <= mode stability

Eigenvalue symmetries give decoupled mode launching conditions
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Eigenvalue Symmetry 1:

Stable
Im }.f A

I(Ti

Eigenvalue Symmetry 2:
Unstable, Lattice Resonance

Im?\u_r A
—ITC
)‘i =74 e
A, [ 1A,
-— -— -
1 Re A,
. U, =(1/y, )e

SM Lund, USPAS 2018

Launching

Condition

/ Projections

y A Breathing Mode (+)
Envelope

Quadrupole Mode (-)
Envelope

«~  Breathing
Brx Mode (+)

_ Quadrupole
Ory==0r xNode (-)
Vi -

-

X
Matched Beam e
Envelope Fm | or x|

Quadrupole and

Breathing Modes
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General Envelope Mode Limits

Using phase-amplitude analysis can show for any linear focusing lattice:

1) Phase advance of any normal mode satisfies the zero space-charge limait:

lim oy = 20
Q—0 ¢ 0

2) Pure normal modes (not driven) evolve with a quadratic phase-space
(Courant-Snyder) invariant in the normal coordinates of the mode

Simply expressed for decoupled modes with Ky = Ky, €z =€y

5 2
[ Ti(s)] + [ (8)074 (5) — we (s)dr(s)]? = const
w(s)
where ’ 322 1
w+—|—/<ow++7w+—|—7w+—w—i:()
3e? 1
w’_’—|—/<;w_—|—%w_——320
re w?

wa(s+ Ly) = wi(s)
Analogous results for Coupled modes [See Edwards and Teng, IEEE Trans Nuc. Sci. 20, 885 (1973)]
+ But typically much more complex expression due to coupling
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S8: Envelope Modes in Continuous Focusing
Lund and Bukh, PRSTAB 7, 024801 (2004)

. 2
Focusing: K (8) = ky(s) = k2 = <@> = const

Lp
Matched beam: Ex = €y = € = const
symmetric beam: Tem(S) = rym(s) = 7,, = const
2
matched envelope: k2 L Q o 8_ — 0
Bo"'m 3
T T,

depressed phase advance: 9 Q € Lp
0 =4/90 ~ 3= T2
(Tm/ Lp) '

10n: 2 2
one parameter needed for scaled solution: kBO c 08 £2 ( o / 00)2

Decoupled Modes: 02 = Q*L2 — [1— (0/00)2]2

015 (s) £ 0ry(s)
2

or4(s) =
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Envelope equations of motion become:

d> [ or or o [ 6ky Ok 0Q de,  O€
LgdSQ (TJF) + 0% (_r+> = — 20 <k2 + k2y> +(a§—02)5+02 ( — gy)
m m B0 B0
d> [ or_ or_ o2 [ 6k oK de de
2 2 e — 0 x Yy 2 r Y
Lpds2(rm)+a(rm) 2 (k%o k%0>+0 ( S £ )

— 2 .
ot Z\/ 200 + 20° “breathing”  mode phase advance

o_ E\/ o5 + 302  “quadrupole” mode phase advance

Homogeneous equations for normal modes:

d? ’
@67“:& + (Z—i) 57°:|: =0
p

+ Simple harmonic oscillator equation

Homogeneous Solution (normal modes):

— 8 or’y (8 — 5;
0r+(s) = or4(s;) cos (O’i > SZ) un 0rs.(si) <in (Uj: 575 )
Ly Ly

or+(s;), 07’ (s;) mode initial conditions
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Properties of continuous focusing homogeneous solution: Normal Modes

2.0
1.8
1.6
1.4
1.2

1(8)

Normalized Mode Phase Advance

Mode Phase Advances Mode Projections
vy A Breathing Mode (+)
Quadrupole Mode (-) /Envelope
Envelope =/ © Breathin
N Sry:§rx Mode (+§g
Breathing Mode ) _z_;_,f___grxﬁizf?g;ﬂe
G, /0y m
.
c./0y
Quadrupole Mode |
Matched Beam .
.0 0.2 0.4 0.6 0.8 1 .0 Envelope Fin ‘erl
Quadrupole and
(¢} / (¢} 0 Breathing Modes
0T, + or
o E\/ 208 + 202 Breathing Mode: ory = 5 Y
0— = \/ op + 30 Quadrupole Mode: §r_ = —= ; l

SM Lund, USPAS 2018
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Particular Solution (driving perturbations):
Green's function form of solution derived using projections onto normal modes
+ See proof that this is a valid solution is given in Appendix A

5p+(5):_028 52%25) 5%25) +(03_02>5QC§S)+02 [552(5)+55y€(3)]
o :(5%&;,;(8) 0K (s): o [6ex(s)  dey(s)
o)== | T - e [T 2

S— S

y L. S
Gi(s,5) = /L sin (ai 7 )
p p

Green's function solution 1s fully general. Insight gained from simplified solutions for
specific classes of driving perturbations:
+ Adiabatic ,
» Sudden covered 1n these lectures
+ Ramped
+ Harmonic

covered in PRSTAB Review article
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Continuous Focusing — adiabatic particular solution

For driving perturbations dp+(s) and dp—(s) slow on quadrupole mode (slower
mode) wavelength ~ 27L,/o_ the Green function solution reduces to:

ory (s Op (s
:( ) — ;2( ) / Focusing / Perveance
m +
v (1) @), [LL=(0/00)*] 6Q0s)
|21+ (0/00)?] 2 k%o k%o 214 (0/00)? @
(0/09)? 1 (bex(s)  dey(s)
+ 51 3 + :
14 (0/00)? | 2 £ £
pa Emittance
5r_(s)  Sp_(s) Coefficients of adiabatic
7“_m = (;% / Focusing terms in square brackets“[ ]”
] 1 11 (dre(s) Ory(s)
|1 +3(0/09)?] 2 < k2, k2, O+ E\/208+202
L[ 200/00)® T 1 (Seuls) 02y (s o_ =03 + 307
1+ 3(0/00)? | 2 € £ .
Y Emittance
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Derivation of Adiabatic Solution:
+ Several ways to derive, show more “mechanical” procedure here ....

Use:

Or4(s) 1 .
- = L]% /SZ ds G (s,5)0p+(S)

s=s _ Opx(s) o (Ois—si> pi( i)
: LP

b
op+(s) No Initial Perturbation
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Comments on Adiabatic Solution:
+ Adiabatic response is essentially a slow adaptation in the matched envelope to
perturbations (solution does not oscillate due to slow changes)
+ Slow envelope frequency o_ sets the scale for slow variations required

Replacements in adiabatically adapted match:

Toe =Ty — Tm + 0T + 07—

Ty = Tm — Tm + 07— — 074

Parameter replacements in rematched beam (no longer axisymmetric):

ke = k30 — ko + 0k (s)
Ky = kg — kg + 0ky(s)
Q — Q+0Q(s)
Ex =€ — €+ 0z (8)
gy =€ —> €+ 0gy(s)
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Continuous Focusing — adiabatic solution coefficients
a) &, = (8r,+ &r,)/2 Breathing Mode Projection

Z 05 .

b . Relative strength of:

% 04 | Term:

S o3|l oyt * Space-Charge (Perveance)

= - <1+ {d‘/dﬂ}l“ . .

2 o0 + Applied Focusing

% . Flocusinlg Terms: ijszt:nce £ EmlttanCe

2 01 2-I+|{-:'_'i!-:'_'r“}3 \ (Gﬂ:l:”}z .

E 0 1+ (0/0y)? terms vary with space-charge

= %0 02 02 06 08 10 depression (o /o) for both
G /S breathing and quadrupole

bj &. = (8ry- &ry)2  Quadrupole Mode Projection |, ,4e projections

= 1.0

R Emittance Terms:

= 0.8 (0/09)"

g L+(o/0) N

© 0.6 < G| Plots allow one to read off the

é 04 Flocusinlg Terms://”/ ] relative impOI'tanCG Of VaI'iOllS

& 0.0 ey contributions to beam

g 0 mismatch as a function of

§ %0 02 02 06 08 10 space-charge strength

C /0y
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Continuous Focusing — sudden particular solution

For sudden, step function driving perturbations of form:

axial coordinate Hat quantities

0p+(s) = 0p+O(s — sp) ® = %P perturbation applied are constant
amplitudes
with amplitudes: )

2 —_— — ] —~ —_— —

(Sp+ = — 9 k%o + k%o —l_(UO — O )54—0' ? ? = const

— 2 [6r,  Ory | de,  Oc,

Ip_ = _ % IZ — I;y + 0 A Y const
2 ] kG0 Kgo | € €

The solution is given by the substitution

in the expression for the adiabatic solution:

+ Manipulate Green's function solution to show (similar to Adiabatic case steps)

0T+ (s) _ op+(s)
01

T'm

with

opL(s) — 5—1;; [1 — COS (ai

S— S
Lp

)| ets -5

SM Lund, USPAS 2018
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Sudden perturbation solution, substitute in pervious adiabatic expressions:

ore(s) _ D+ [1 — cos (ais_spﬂ Os = 5p)

Tm O':2|: Lp

Ilustration of solution properties for a sudden 0P+ (s) perturbation term

v's..E ‘

:’r 2x Adiabatic
S Y /e S .

. Max Ecursion
g Sudden ( a Cursio )
E A
o . .

2 | Adiabatic , |\ [\ [ Adiabatic

2. 4 Excursion
o
©
= A
m ]

vy ‘
| [ _r_:

Axial Coordinate, s

For the same amplitude of total driving perturbations, sudden perturbations result in 2x the
envelope excursion that adiabatic perturbations produce
97
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Continuous Focusing — Driven perturbations on a continuously
focused matched equilibrium (summary)

Adiabatic Perturbations:
+ Essentially a rematch of equilibrium beam if the change is slow relative to
quadrupole envelope mode oscillations (phase advance o_ )

Sudden Perturbations:

+ Projects onto breathing and quadrupole envelope modes with 2x adiabatic
amplitude oscillating from zero to max amplitude

Ramped Perturbations: (see PRSTAB article; based on Green's function)

+ Can be viewed as a superposition between the adiabatic and sudden form
perturbations

Harmonic Perturbations: (see PRSTAB article; based on Green's function)
+ Can build very general cases of driven perturbations by linear superposition
+ Results may be less “intuitive” (expressed in complex form)

Cases covered in class illustrate a range of common behavior and help build
intuition on what can drive envelope oscillations and the relative importance of
various terms as a function of space-charge strength
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Appendix A: Particular Solution for Driven Envelope Modes
Lund and Bukh, PRSTAB 7, 024801 (2004)

Following Wiedemann (Particle Accelerator Physics, 1993, pp 106) first, consider more
general Driven Hill's Equation

" + k(s)x = p(s)

The corresponding homogeneous equation:

2" + k(s)r =0

has principal solutions

z(s) = C1C(s) + Ca5(s) (', Cy = constants
where

Cosine-Like Solution Sine-Like Solution

C"+ k(s)C =0 S"+ k(s)S =0

C(s=s;)=1 S(s=1s;)=0

C'(s=s;) = S'(s=s;) =1

Recall that the homogeneous solutions have the Wronskian symmetry:
+ See S.M. Lund lectures on Transverse Dynamics, S5C

W(s) =C(s)S'(s) —C'(s)S(s) =1

SM Lund, USPAS 2018 Accelerator Physics
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A particular solution to the Driven Hill's Equation can be constructed using a
Greens' function method:

2(s) = / 45 G(s, $)p(3)

Sq

G(s,3) = S(s)C(3) — C(5)S(5)

Demonstrate this works by first takmg derivatives:

x—5<>/dsc<><>—c<>/dss<><§>

Sq

o = 8'(s >/dsc<> ® - >/:d§8<§>p<§>
/3

—5/(s) / 45 C(3)p(3) — C'(s) / 45 S(3)p(3)
"= S (s >/dsc<> ) = 't )/dss< )p(3)

/1 C Wronskian Symmetry

—p(s) + S"(s) / 43 C(3)p(3) — C"(s) / 15 S(3)p(3)

Siq

SM Lund, USPAS 2018 Accelerator Physics
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Insert these results in the Driven Hill's Equation:
Definition of Principal Orbit Functions

2" 4+ k(s)r = p(s) + [S” —1—/&9]/ ds C(s)p [c” +/C / p(5)

(]

= p(s)

Thereby proving we have a valid particular solution. The general solution to the
Driven Hill's Equation 1s then:

+ Choose constants 'y, (5 consistent with particle initial conditions at s = s;

x(s) = x(s;)C(s) + 2'(s;)S(s) + /Sd§ G(s,5)p(s)
G(s,5) =S(s)C(5) —C(s)S(8)

Apply these results to the driven perturbed envelope equation:

d? 02
72 —O0r+ + L2 57“:|: L2 5p:|:
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The homogeneous equations can be solved exactly for continuous focusing:

S — 8;
C(s) = cos (O'j: Z)
Ly

L — S
S(s) = ﬁ sin <aiSLpS )

and the Green's function can be simplified as:
G(s,5) = S(s)C(5) — C(s)S(5)

L, [ . S — S; S — S; S—5S;\ . S —S;
= ——<sin| o cos | o —cos | o sin | o
o L L L, L,

L, . §s— 3§
= —S1In\| o
o+ + L,
Using these results the particular solution for the driven perturbed envelope

equation can be expressed as:
+ Here we rescale the Green's function to put in the form given in S8

or+(s) 1
rm L2
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Simplified Treatment of Envelope Modes
in Continuous Focusing Channels
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Properties of continuous focusing homogeneous solution: Normal Modes

| Mode Phase Advances Mode Projections L
o A | Breathing Mode (+) = :

§ 2 O Quadrupole Mode (- ) !,E"VBIOW [rom ‘ LLMJ J

"U En\c]opc ’/ Brea(hin 5 : :

< 1.8 1N E.r O Mode )
' % Breathing Mode §8 -3 r Quadmpole

= 1 6 N \ A Mode (~)

m b 0,/0p T

] i

g~ / .

e 1 4 X

E c./0 0

8 1.2 Quadrupole Mode

=

E 1 % Matchéd Beam

8 0 0.2 0.4 0.6 0-8 1 -O Envelope

Z Quadrupele and

e} /O‘ 0 Breathing Modes
—— , Ory + or
o =4/202 + 202 Breathing Mode: ory = 5 Y
_ /2 ory, — or
o_ =y/0§ + 302 Quadrupole Mode: §p_ = % Y
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S9: Envelope Modes in Periodic Focusing Channels
Lund and Bukh, PRSTAB 7, 024801 (2004)
Overview
+* Much more complicated than continuous focusing results
- Lattice can couple to oscillations and destabilize the system
- Broad parametric instability bands can result
+Instability bands calculated will exclude wide ranges of parameter space from
machine operation
- Exclusion region depends on focusing type
- Will find that alternating gradient quadrupole focusing tends to have more
instability than high occupancy solenoidal focusing due to larger envelope
flutter driving stronger, broader instability
*Results in this section are calculated numerically and summarized
parametrically to illustrate the full range of normal mode characteristics
- Driven modes not considered but should be mostly analogous to CF case
- Results presented in terms of phase advances and normalized space-charge
strength to allow broad applicability
- Coupled 4x4 eigenvalue problem and mode symmetries identified in S6 are
solved numerically and analytical limits are verified
- Carried out for piecewise constant lattices for simplicity (fringe changes little)
* More information on results presented can be found in the PRSTAB review
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Procedure

1) Specify periodic lattice to be employed and beam parameters

2) Calculate undepressed phase advance 0¢ and characterize focusing
strength 1in terms of o

3) Find matched envelope solution to the KV envelope equation and

depressed phase advance O to estimate space-charge strength

* Procedures described in: Lund, Chilton and Lee, PRSTAB 9, 064201 (2006)
can be applied to greatly simplify analysis, particularly where lattice is unstable
- Instabilities complicate calculation of matching conditions

4) Calculate 4x4 envelope perturbation transfer matrix M (s; + L,|s;)
through one lattice period and calculate 4 eigenvalues

5) Analyze eigenvalues using symmetries to characterize mode properties

* Instabilities
* Stable mode characteristics and launching conditions

SM Lund, USPAS 2018 Accelerator Physics 111




1* Example: Envelope Stability for Periodic Solenoid Focusing

Focusing Lattice:

Ko (s) A (Ko = Ky) Occupancy 7]
-------------------------------------------- —| ne (0.1]
! . . ; . -
' | i - . 5
/2  nL, d/2 = d/2
, ' d=(1—n)L,/2
. . R L
| Lattice Period |

Matched Envelope Equation:
Kz (S) = Ky(s) = Kk(s) Ex = Ey =€

rz(8) = ry(s) = rm(s)

' (5) + K(8)rm(s) — =9 — Tf—?s) =0

Tm(s)
rm(s+ Lyp) = 1m(S)

SM Lund, USPAS 2018 Accelerator Physics
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Using a transfer matrix approach on undepressed single-particle orbits set the
strength of the focusing function for specified undepressed particle phase
advance by solving:

+ See: S.M. Lund, lectures on Transverse Particle Dynamics

+ Particle phase-advance 1s measured in the rotating Larmor frame

Solenoidal Focusing - piecewise constant focusing lattice
1—mn

~ L
cos og = cos(20) — T@ sin(20) O = \/EQ b

-
S

i---l l--i--l "'"i“——""i""—"’i

T TCap T d=(1-n)l,
;... Lp --; f — nLP

| Lattice Period | n € (O, 1] — Occupancy
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Flutter scaling of the matched beam envelope varies for quadrupole and
solenoidal focusing

In both cases depends little on space charge with theory showing:

72| max . (1 —coso )<1 m(l n/2) Solenoidal Focusing
T ~ ] (1 —cosog)/? 23/28 %2)1/2 Quadrupole Focusing

Based on: E.P. Lee, Phys. Plasmas, 9 4301 (2002)

+ Solenoids: for limit o/og — 0

- Varies significant in both og and 7

* Quadrupoles:
- Phase advance 0 variation significant
- Occupancy 1) variation weak

Solenoidal Focusing FODO Quadrupole Focusmg
.9 p ——— 1 — ——— 1 0.5 .
0.8 f 0.4}
s . ST —D.EE I
I 7= D050 he ) |
"= = 0.2F
i';l = 1 EI & -
Ul o ol
U .
1 L ———
5D a0 120 &0 a0 120
oy (degrees) o |degrees)

SM Lund, USPAS 2018 Accelerator Physics 114




Solenoidal Focusing — Matched Envelope Solution

a) 6,5 =80°andn = 0.75 High Occupancy

{% 0.7 oy = 0.5 (Mid Lens aT'h:anrit'L}

0.6 v — "

— 0.25 ! T~
Vs

SoSp—— =

o 0.1 :

g 0.4 K |

= | | L

(a1 i

00 02 04 06 08 10
Axial Coordinate, s!Lp

b) 6g=80"andn =025 Low Occupancy

E"“ 0.7} © (Mid Lens and Mid Drift
lg clog=0.5 7, =0

T 0.6 i'r T
] | <
= 0.1 S

z 041

2

&

2"

00 02 04 06 08 10

Axial Coordinate, s/L,,

SM Lund, USPAS 2018

Focusing:
a(s) = iy (5) = K(s)

k(s 4 Lp) = #(s)

Matched Beam:
Ex = Ey = € = const

Tem(8) = Tym(s) = Tm(8)
rm(s+ Lp) = rp(s)

Comments:
+ Envelope flutter a strong
function of occupancy 7]
- Flutter also increases with
higher values of 0
*+ Space-charge expands envelope
but does not strongly modity

periodic flutter
Accelerator Physics 115




Using a transfer matrix approach on undepressed single-particle orbits set the
strength of the focusing function for specified undepressed particle phase
advance by solving:

+ See: S.M. Lund, lectures on Transverse Particle Dynamics

+ Particle phase-advance 1s measured in the rotating Larmor frame

Solenoidal Focusing - piecewise constant focusing lattice
1—mn

~ L
cos og = cos(20) — T@ sin(20) O = \/EQ b

-
S

i---l l--i--l "'"i“——""i""—"’i

T TCap T d=(1-n)l,
;... Lp --; f — nLP

| Lattice Period | n € (O, 1] — Occupancy
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Solenoidal Focusing — parametric plots of breathing and quadrupole envelope
mode phase advances two values of undepressed phase advance
b) n=0.25, 6= 115°

a) n=0.25, 6,=80°
+: Stable
—: Stable
|(/‘.-H'|
oL/
1 |
O, Cont. Fac.
L (dashed overlaid)

\

—

! & _Cont. Foc.
' [dashed averlaid) |

Phase Adv. (deg/period)
588838

00 02 04 06 08 10

SM Lund, USPAS 2018

G /Gy
S 14 No Instability
o |
E 1.0 T 4
5 0.6 ,
O 00 02 04 06 08 L0

G /0p

Phase Adv. (deg/period)

Growth Factor

tf’"'“\.l s "“‘x
] _.J’ "x ;
220| G, Cont Foc.
[d.lsh:d] :
| 80 |D "-._ . G_
180 -—-—-_-'j”‘i“* e
| & Cont. Foc.
140 rd.:_shcdﬁ
100l |
00 02 04 06 08 1.0
Gfﬁﬂ
'Y, Band 7Y_Band
1.4 : iLat. Res.) (Lat Res.)
1.0 T+, T- /’Hﬂ_ﬁh\g F T+ T-,
. - | \"""--._.__I___...-r"’W
osf | V%
00 02 04 06 08 LO

+: Stable +: Lattice Kescnance
—: Stable —: Stable

G /0p ‘

T

\Jlf“f_
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Solenoidal Focusing — mode instability bands become wider and stronger for

smaller occupancy

0.75 (Blue)
n= 0'0:1150
0.10 (Red)
=)
S
D
&
oY)
Q
=
>
Mo
&
Q i . . | _ ]
S 00 02 04 06 08 1.0
= c /Gy
§ 1.4} V. Band Y_Band
9 _
=~ 1.0% @ )
= _ — /
5 0.6} | | | |
O 00 02 04 06 08 1.0
G/GO

SM Lund, USPAS 2018
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Comments:
*+ Mode phase advance in

instability band 180 degrees
per lattice period
Significant deviations from
continuous model even outside
the band of instability when
space-charge is strong
Instability band becomes
stronger/broader for low
occupancy and
weaker/narrower for high
occupancy
- Disappears at full occupancy
(continuous limit)
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Solenoidal Focusing — broad ranges of parametric instability are found for the
breathing and quadrupole bands that must be avoided in machine operation:
Contour unstable parameters for breathing and quadrupole modes to clarify

n =0.75 n = 0.25

Breathlng and Quadrupole Mode Growth Factors, v, and y_

1.0 1.0 |
lI1|"J'+ | I
0.8 i 0.8 I
Y- 0.0
0.6 Lattice Res. S 0.6
© ©
N ~N Y
© 04 © 04 +
Vs Lattice
0.2 Lattice 0.2 Res.
Res. Band Band
0.0 ' 0.0 |
100 120 140 160 180 100 120 140 160 180
G (deg/period) O (deg/period)

Eigenvalues in unstable regions:
Ay = o 6” v+ > 1 for unstable growing mode

In v+ = e-folds of growth per period
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Solenoidal Focusing — parametric mode properties of band oscillations

a) 1 =0.75 b) 1 =0.25
Breathing Mode Phase Advance, 6,

1.0F \& E 1.0¢ - \Q T
= /M
0.8 Y 0.8 Y
0.6 E 0.6 >
: ; : g
© 2 b o
~ v ~ 2
© 04 £ Los i
- —
0.2 0.2
0.0 0.0 ! .
0 30 60 90 120 150 180 0 30 60 90 120 150 180
G (deg/period) O (deg/period)
Quadrupole Mode Phase Advance, 6_
1.0 -E 1.0 N E
M M
0.8 9 0.8 3
0.6 & 0.6 4
© | X © 2
© 04 = © 04 2
0.2 ‘ 0.2
0.0 0.0 I |
0 120 150 180 0 30 90 120 150 180

‘50 (deg/perlod) o (deg/perlod)
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Parametric scaling of the boundary of the region of instability

Solenoid instability bands identified as a Lattice Resonance Instability

corresponding to a 1/2-integer parametric resonance between the mode oscillation
frequency and the lattice

Estimate normal mode frequencies for weak focusing from continuous
focusing theory:

oL \/20(2) + 2072

o_ ~ \/0'8—|—30'2

This gives (measure phase advance in degrees):
Breathing Band:

Quadrupole Band:
o, = 180° o_ = 180°

— (/202 +20% = 180° — (/o2 +30% = 180°

+ Predictions poor due to inaccurate mode frequency estimates

- Predictions nearer to left edge of band rather than center (expect resonance strongest at center)
+ Simple resonance condition cannot predict width of band

- Important to characterize width to avoid instability in machine designs

- Width of band should vary strongly with solenoid occupancy 7
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To provide an approximate guide on the location/width of the breathing and
quadrupole envelope bands, many parametric runs were made and the instability
band boundaries were quantified through curve fitting:

1.0 [ _
S
B 0.8f :
. Quadrupole
-
2 0.61 N
D! Right
CD -
8 Breathing
=, 0.4f :
é} i Left
o 0.2: Right i
g _ Left
ool
0 30 60 90 120 150 180
Phase Advance, oy [Degrees|
Breathing Band Boundaries: Quadrupole Band Boundaries:
g0
2 2 2 _
o+ foi = (90°)“(1 + f) Left: a/oo+gﬁ_l+g
/= f(o0m) = Right: 0 + 900 = 90°(1 + g)
1.113 — 0.413n + 0.003480¢, left-edge
. 1, left-edge
1.046 + 0.318n — 0.004100¢, right-edge g=yg(n) =
0.227 — 0.173n, right-edge
+ Breathing band: maximum errors ~5 /~2 degrees on left/right boundaries

+ Quadrupole band:  maximum errors ~8/~3 degrees on left/right boundaries
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2" Example: Env Stability for Periodic Quadrupole Focusing

Quadrupole Doublet Focusing Lattice:
et | (=x)

UK | S i RS (0, 1] Occupancy
dir ! T]LPIZ, dz
FQuad Hi*- -riiﬂ - h
i | D Quad | 5
MLp/2 a € |0,1/2] Syncopation
--------------------------------------- K- -- Factor
!t I = dy=0o(l-n)L L
i Latticc%criod i d2=(1—(1',)(1—p“l])Lp o = 1/2 — FODO
Matched Envelope Equation:
20 g2
r"" (8) + Kp(8)rpm(s) — ——=% _ =9
() e )ram(3) = () 7 (5)
20 g2
r?/J/m(S) + Ky (8)Tym(8) — — Y _ =0

Tem(8) +Tym(s)  75,(8)

Tem(8) > 0
(s) >0

Tym(S)

SM Lund, USPAS 2018
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Using a transfer matrix approach on undepressed single-particle orbits set the
strength of the focusing function for specified undepressed particle phase
advance by solving:

+ See: S.M. Lund, lectures on Transverse Particle Dynamics

Quadrupole Doublet Focusing - piecewise constant focusing lattice

1 —
cos og = cos O cosh © + —ne(cos © sinh © — sin © cosh O) _
U &Ly

)2 0=
—2a(1 — «) u 277) ©?sin O sinh © 2

'y
K(s) | 1 (i =-K,)

| A
! - 'I.C —— = —
dy \MLy2, n € (0,1] Occupancy
F Quad | |

»
| . D Quad S
nIp/2 | :
B SR I NN R R _ a€[0,1/2] Syncopation
ir-'l Lp I-i d I= Ui(l—'l’[ )Lp Factor
| Lattice Period - dy=(1-o)(1M)L, a=1/2— FODO
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Envelope Flutter Scaling of Matched Envelope Solution

For FODO quadrupole transport, plot relative matched beam envelope excursions
for a fixed form focusing lattice and fixed beam perveance as the strength of
applied focusing strength increases as measured by o

FODO Quadrupole Ly g
' ] Ty :/ — 14 (5)
1.4] T
1.2} n=05 L,=05m
' Q=5x10""
| eqx = €y = 50 mm-mrad
0.8} ]
: 0 | o/og
0| 45° 0.20
0.0 02 04 06 08 10 80° 026
Lattice Period, s/L, 110" 0.32

+ Larger matched envelope “flutter” corresponds to larger oy
- More flutter results in higher prospects for instability due to transfer of energy
from applied focusing
+ Little dependence of flutter on quadrupole occupancy 7
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Quadrupole Doublet Focusing —

FODO and Syncopated Lattices

a) 6,=80°n=0.6949,and =12 FODO
—_ 10 i(Mid Drifts) | (Mid Lenses)
= i UFIGU:U.S rx_r Crl=r.=0
] *' Y. T Ty
|@ 0.8} Ty
o ’
F [
- 6
a:" AL
5 0.4}
Sg\.l

00 02 04 06 08 1.0
Axial Coordinate, .?;’Lp

b) 6,=80%1m=0.6949,and 2 =0.1 Syncopated
1.0

—
o

i i

“-~ [} 6
- .

0.4}

Radii, r

00 02 04 06 08 10
Axial Coordinate, stp
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Matched Envelope Solution

Focusing:
ko (s) = —ky(s) = K(s)
k(s + Lpy) = k(s)
Matched Beam:

Ex = Ey = € = const
razm(s _|_ Lp) — Tilim(s)
rym (S + Lp) = rym(s)

Comments:

+ Envelope flutter a weak function
of occupancy 7)

» Syncopation factors & # 1/2
reduce envelope symmetry and
can drive more instabilities

*+ Space-charge expands envelope
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Quadrupole Focusing — parametric plots of breathing and quadrupole
envelope mode phase advances two values of undepressed phase advance

a) N=0.6949, a=0.1, 65=380° b) n=0.6949, a=0.1, op=115° Syncopated
Syncopated B: Stable B:Lat. Res. B Conf.Res. B: Stable
(Q: Stable % Q:Stable  Q:Conf. Res. (Q: Stable
@ N - /s /h
_ _ NPARNY,
g 1601 o g 240 G+: Cont. Foc. ' | (
5] : L - (dashed) | " 1
o O, Cont. Foc. £ . | P
> 140 (dashed) S 200f | 7
3 120 0 I R A 180
- = 160} e
- e u-c -'E"
E 109 = i G_:\Zont. Foc. < i | GQ - :'J'\ Cont. Foc.
9 80— e (dashed) % 120f __J:_I”,..a-- N (_dashed)i
..E 0.0 02 04 06 08 1.0 f 00 02 04 06 08 1.0
G /Gy G/Gg
- T ' Y3YoBand, |
5 14l No Instability] 5 4| (le.ns et
O : Q : : '
Lol aYe SR '/:;\*\/’\ taYo d
£ 7 | € T [ | '
= = / ve Band :
= 06¢ | o 0.6 . J'(?:fmf. Res) ' U/Yp LYo
O 00 02 04 06 08 10 © 0.0J 02 04 06 08 1.0
G /0g . C/Cg
| LE
e RN
S~
l 1/yg
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Important point:
For quadrupole focusing the normal mode coordinates are NOT
5ty £ 01y ory < Breathing Mode

or4 = 5 or— < Quadrupole Mode

* Only works for axisymmetric focusin (K = Ky = K)
with an axisymmetric matched beam (€z = €y = € )

However, for low 0o we will find that the two stable modes correspond closely in
frequency with continuous focusing model breathing and quadrupole modes even
though they have different symmetry properties in terms of normal mode
coordinates. Due to this, we denote:

Subscript B <== Breathing Mode
Subscript Q <== Quadrupole Mode

+ Label branches breathing and quadrupole in terms of low 0 branch frequencies
corresponding to breathing and quadrupole frequencies from continuous theory

+ Continue label to larger values of 09 where frequency correspondence with
continuous modes breaks down
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Quadrupole Focusing — mode instability bands vary little/strongly with
occupancy for FODO/syncopated lattices

a) o= 1/2 (FODO), 6y=115° b) =0.1, 5g=115°
FODO 090  (Blue) Syncopated
_ ) 0.6949 (Black)
N 0.25 (Green)
0.10 (Red)
=) =)
© S
5 220 = 220
& £
=Tl =T
i 180 ﬁ 180
Z 140! Z 140!
< <
)] (D]
w0t . . . 4 ZzwoL__. ..
= 0.0 0.2 0.4 0.6 0.8 1.0 = 0.0 0.2 04 0.6 0.8 1.0
29 2y
G /0y G/Gg
= ! e Band
% 1.4} S 14y TB’(::YEM.R%)'
o I — AL
S 10 T 10——=%
= = Y; Band
o 0.6¢ S 0.6-(£LR&)
O 00 02 04 06 08 10 © 00 02 04 06 08 1.0
G /Gg G /0y
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Quadrupole Focusing — broad ranges of parametric instability are found for
the breathing and quadrupole bands that must be avoided in machine
operation: Contour parameter ranges of instability to clarify

FODO Lattice Syncopated Lattice
n=0.6949, a=1/2 n=0.6949, a=0.1
o Breathing and Quadrupole Mode Growth Factors, v and vy
. - T ' 1.0 '
- Injvg o g 1.0 - In|yg o g 1.0
0.8 ' E 0.8 | E
1e Yo 0.0 1s,Yo 0.0
6:10.6 -D“ﬂl]lgefllll:dﬂes éﬁ 0.6 Dnﬂuﬁeglt‘l {!Iies.
™~ ~ |
© 04 © 04| 12
Lattice
0.2 0.2 Res.
Band |
0.0 | 0.0 L
100 120 140 160 180 100 120 140 160 180
Go(deg/period) G (deg/period)

In |vp.q| = e-folds of growth per period of unstable mode
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Quadrupole Focusing — parametric mode properties of band oscillations

a) N=0.6949, aa=1/2 FODO b) 1 =10.6949, o. = 0.1 Syncopated
Breathing Mode Phase Advance, G
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Parametric scaling of the boundary of the region of instability

Quadrupole instability bands identified:
+ Confluent Band: 1/2-integer parametric resonance between both breathing and
quadrupole modes and the lattice
+ Lattice Resonance Band (Syncopated lattice only): 1/2-integer parametric
resonance between one envelope mode and the lattice

Estimate mode frequencies for weak focusing from continuous focusing theory:

op =04 = \/208+202

oQ =0_ = \/08 + 302
This gives (measure phase advance in degrees here):

Confluent Band: [attice Resonance Band:

(04 +0_)/2 = 180° o4 = 180°

— 202200+ \Jor 1302 =360° | = /208 +207 = 180°

+ Predictions poor due to inaccurate mode frequency estimates from continuous model
- Predictions nearer to edge of band rather than center (expect resonance strongest at center)

+ Cannot predict width of band
- Important to characterize to avoid instability
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To provide a rough guide on the location/width of the important FODO confluent
instability band, many parametric runs were made and the instability region
boundary was quantified through curve fitting:

1.0 _

S . ]

o 08 Right Edge

-

S 0.6

7 _

8 5

o 041 Left Edge

- I

o 0.2}

= _

= ool |

0 30 60 90 120 150 180
Phase Advance, g |Degrees|
Left Edge Boundary: Right Edge Boundary:
o + f(n)og = (90°)*[L + f(n)] o+ g(n)oo = 90°[1 + g(1)]
4 1
fn) = 3 9(n) =3

+ Negligible variation in quadrupole occupancy 7] is observed
+ Formulas have a maximum error ~5 and ~2 degrees on left and right boundaries
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Pure mode launching conditions for quadrupole focusing

Launching a pure breathing (B) or quadrupole (Q) mode in alternating gradient
quadrupole focusing requires specific projections that generally require an
eigenvalue/eigenvector analysis of symmetries to carry out

+ See eignenvalue symmetries given in S6

Show example launch conditions for:

FODO Lattice n = 0.6949
oo = 80°
O'/O'o = 0.2
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Quadrupole Focusing — projections of perturbations on pure modes varies

strongly with mode phase and the location 1n the lattice (FODO example)
Breathing Mode, Mid- Quadrupole Quadrupole Mode, Mid- Quadrupole

- 0.10 :'e. 0.10
Ql

o

< 0.00

L:";

“Y1 05 0 0.5 1 “Y1 05 0 0.5 1

Vp/m (Mode Phase) Yo & (Mode Phase)
0Ty 7 0Ty, 0Ty # —0Ty
generally not exact generally not exact
breathing symmetry quadrupole symmetry
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Breathing Mode, Mid—Drift Quadrupole Mode, Mid—Drift
0.10

<
—
o

Radii, 8r;/[./2Q L,]
Radii, 8r,/[./20 L,]
Lo

0.00 0.00
-0.05¢ -0.05}
-0.10 : - - -0.10 : - :
-1 -0.5 0 0.5 1 -1 -0.5 0 0.5 1
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oy 0.20 : . e o 020 — T :
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© 000 ©
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As a further guide in pure mode launching, summarize FODO results for:
+ Mid-axial location of an x-focusing quadrupole with the additional choice 57“;- =0

+ Specify ratio of 07/, to launch pure mode
+ Plot as function of 0g for gg < 90°
- Results vary little with occupancy 1 or /0

0.90 {Blue)
N = | 06949 (Black)

0.10  (Red)
Breathing Mode, ¢/G,=0.2 Breathing Mode, ¢/6,=0.5

O 3 T T O 30 T T
%. 3.0 g 3.0
A 2.5¢ Br /or, re 2.5 ory /Or,,
= =
S 2.0} & 20}
£ L1
5 1.5 5 1.5
: :

1.0 1.0
= 0 15 30 45 60 75 GO K 0O 15 30 45 60 7% Q0

Gy (degrees) G (degrees)
Quadrupole Mode, 6/6,=0.2 Quadrupole Mode, ¢/6,=0.5

O 3gf A
= 3.0 _% 3.0
o 2.5¢ —Brx far}? Y 2.5¢1 —er H’E-r},
= =
S 20} :
= 2.0 % 2.0
3 15} 5 15)
: :

1.0 e 1.0 e
H 0 15 30 45 60 75 90 H 0 15 30 45 60 75 90

Oy (degrees) Gy (degrees)
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phase in this case
due to the choice
/ /
or, =0 = 5T?{
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Comments:
+ For quadrupole transport using the axisymmetric equilibrium projections on
the breathing (+) mode and quadrupole (-) mode will NOT generally result in
nearly pure mode projections:

0ry + 0 : L
or, = L —; "y + Breathing Mode Projection

5 xr - 5 . .
sr_ = ; "y + Quadrupole Mode Projection

- Mistake can be commonly found in research papers and can confuse analysis of
Supposidly pure classes of envelope oscillations which are not.

- Recall: reason denoted generalization of breathing mode with a subscript B
and quadrupole mode with a subscript Q was an attempt to avoid
confusion by overgeneralization

+ Must solve for eigenvectors of 4x4 envelope transfer matrix through one lattice
period calculated from the launch location in the lattice and analyze
symmetries to determine proper projections (see S6)

+ Normal mode coordinates can be found for the quadrupole and breathing
modes in AG quadrupole focusing lattices through analysis of the eigenvectors
but the expressions are typically complicated

- Modes have underlying Courant-Snyder invariant but it will be a complicated
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Summary: Envelope band instabilities and growth rates for periodic

solenoidal and quadrupole doublet focusing lattices have been described

Envelope Mode Instability Growth Rates

Solenoid (1 =0.25)

i£

L.attice
Res.

0.5

100 120 140 160

Gy (deg/period)
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Quadrupole FODO (n_=0.70)

1.0 |

0.8

100 120 140 160

Op (deg/period)

Accelerator Physics

180

140




Summary Discussion: Envelope modes in periodic focusing lattices

*Envelope modes are low order collective oscillations and since beam
mismatch always exists, instabilities and must be avoided for good
transport

* KV envelope equations faithfully describe the low order force balance
acting on a beam and can be applied to predict locations of envelope
instability bands in periodic focusing

* Absence of envelope 1nstabilities for a machine operating point 1s a
necessary condition but not sufficient condition for a good operating point

- Higher order kinetic instabilities possible: see lectures on Transverse Kinetic Theory

* Launching pure modes 1n alternating gradient periodic focusing channels

requires analysis of the mode eigenvalues/eigenvectors

- Even at symmetrical points in lattices, launching conditions can be surprisingly
complex

*Driven modes for periodic focusing will be considerably more complex
than for continuous focusing

- Can be analyzed paralleling the analysis given for continuous focusing and likely
have similar characteristics where the envelope is stable.
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Corrections and suggestions for improvements welcome!

These notes will be corrected and expanded for reference and for use in future

editions of US Particle Accelerator School (USPAS) and Michigan State
University (MSU) courses. Contact:

Prof. Steven M. Lund

Facility for Rare Isotope Beams
Michigan State University

640 South Shaw Lane

East Lansing, MI 48824

lund @frib.msu.edu
(517) 908 — 7291 office
(510) 459 - 4045 mobile

Please provide corrections with respect to the present archived version at:
https://people.nscl.msu.edu/~lund/uspas/ap_2018/

Redistributions of class material welcome. Please do not remove author credits.
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