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Transverse Particle Equations of Motion

7 (’Ybﬁb)/ / q a q A a qu / R
e (By) M3y c2 e By Bit mBee T
q 0
a my; B2c? 0x .
E“ = Applied Electric  Field . d Ny = 1
B® = Applied Magnetic Field - ds 1—p;
o 0 P
Vi = ox 6X¢: e
+ Boundary Conditions on ¢

Derived 1n notes 08.eqns_motion and here expressed in straight

coordinates
+ Also bent coordinate version summarized

Now apply this description to analyze solenoid focusing including fringe field
effects E¢ —

B® = Solenoid Magnetic Field
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Write out transverse particle equations of motion in explicit component form:

(768b)’ o q a q a, !
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qg 09
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S2E: Solenoidal Focusing

The field of an 1deal magnetic solenoid 1s invariant under transverse rotations
about it's axis of symmetry (z) can be expanded in terms of the on-axis field as as:

Coil (Azimuthally Symmetric)

(@ o o s o o s ool Vacuum Maxwell equations:
//]3a V . Ba — O
7 - V xB% =0
//’—\*\ ~

Imply B® can be expressed in

\\ terms of on-axis field B¢(r = 0, 2)

a __ See
E" =0 Appendix D
1SN (=1 077 1B,4(2) (\XL\)”Q or
Bai - 3 Z X1 Reiser
_ 2v—1 )
2 V! (V 1)! 0z 2 Theory and Design
20 2v of Charged
B® — zO _|_ Z o BZO( ) ‘XJ—‘ Particle Beams,
& — V' 0z2V 2 Sec. 3.3.1
B.o(z) = By (x1 =0, 2) = On-Axis Field
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Writing out explicitly the terms of this expansion:

BY(r,z) =tB(r,z) + zB2(r, 2) r=/x2 + y?
= (—xsinf +y cos0)B;(r,z) + zBZ(r, 2)
where oo v .
a (2v—1) f v
By (r.2) ;I/'V—l B (Z)(2>
3 5 7 9
__Bu) | BRG) s BRI 5 BY() 2 BOG) o
2 i 16 384 18432 1474560
o o 5D ey (T
----------------- 4 6 8
B O(Z) B B;/O(Z) 2 B:E:O)(Z) 4 mr6 BiO)( ) A
______ T 4 64 2304 147456 7
B.o(z) = By (r = 0,2) = On-axis Field ~{ | Linear Terms
anB O(Z> aBZO( ) 823 O(Z)
B(n) — z B’ 1" — 2z
20 ( ) O zO( ) Oz Bz()(Z) = 522
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For modeling, we truncate the expansion using only leading-order terms to obtain:
+ Corresponds to linear dynamics in the equations of motion

1 0B,¢(z
2 0z
BY = _16320(Z)y B.o(z) = By(x, =0, 2)
o2 0z — On-Axis Field
Bz — BZO(Z)
Note that this truncated expansion 1s divergence free:
10B,y 0O 0
V-B%=—— : —DB,g =0
2 0z 0x XL+ 9z 2
but not curl free within the vacuum aperture:
a 1 82BZ0(Z) ~ "
V xB 25 822 (—Xy—l—yZE)
10%B, 10%B, -
=3 azg(z)r(—fc sinf + y cos ) = 5 azg(z) 6

+ Nonlinear terms needed to satisty 3D Maxwell equations
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Solenoid equations of motion:
*+ Insert field components into equations of motion and collect terms

v, (b)), Bly(s)  Bwols) , g 09
v YT oB Y T B Y T maBR2R o
(7655) | Bp) [ Bp) my, By e 0
Bs)’ 20(8) | Baols) g 09
" (’Yb Iy 2z T+ o =
T By T 2B By mys B3 Dy
|Bp| = Yo/yme — Rigidity Bzo(s) = We(s)
q | Bp] Yo OpC
B,
we(s) = 4B=0(5) = Cyclotron Frequency
m (in applied axial magnetic field)

+ Equations are linearly cross-coupled in the applied field terms
- x equation depends on y, y'
- y equation depends on x, x'
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It can be shown (see: Appendix B) that the linear cross-coupling in the applied
field can be removed by an s-varying transformation to a rotating
“Larmor” frame:

~. used to denote
rotating frame variables

SM Lund, USPAS 2018

B

T= xcosy(s)+ysini(s)
j = —xsiny(s) +ycos(s)
os) = [ dsku(3

iy (s) = B.o(s) _ we(s)

= Larmor
wave number

s = s; defines
initial condition
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If the beam space-charge 1s axisymmetric:
do  O¢ Or  Opxy
ox, Ordx, Or r

then the space-charge term also decouples under the Larmor transformation and
the equations of motion can be expressed in fully uncoupled form:

, .
4 (765) 74 k(s)7 = q _ (9¢CC
(75s) m% By c? O Will demonstrate
v (768)’ 7+ k(s)j = q 09 Yy Y this in problems
(V58p) - mR B2 Or v for the simple
case of:

f(s) = k2 (s) = Bf;(;)r B [;;Z)Cr

+ Because Larmor frame equations are in the same form as continuous and
quadrupole focusing with a different ~, for solenoidal focusing we implicitly
work in the Larmor frame and simplify notation by dropping the tildes:

B.o(s) = const

}EJ__>XJ_
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Solenoid periodic lattices can be formed similarly to the quadrupole case
+ Drifts placed between solenoids of finite axial length
- Allows space for diagnostics, pumping, acceleration cells, etc.
+ Analogous equivalence cases to quadrupole
- Piecewise constant K often used
+ Fringe can be more important for solenoids

Simple hard-edge solenoid lattice with piecewise constant <

A '

Ra(s)] | (K2 = Ky) e
S e -
| : | . ’
d/2 T 6 Td/2 i d2 d=(1—n)kL,
;_. Lp --; t= ULP
| Lattice Period |

n = Occupancy € (0, 1]
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/// Example: Larmor Frame Particle Orbits in a Periodic Solenoidal Focusing

Lattice: T — T’ phase-space for hard edge elements and applied fields

L,=0.5m
n=20.9

k = 20 rad/m? in Solenoids Z(0) =1 mm
¢ ~0 "By = const

Eay)

=0

—0.5%—
é—m;- : k (scaled + shifted)
53 15 F . —
2.0 F— . — ——t
0 1 > 3 4 5
s/ L, |Lattice Periods|
4k T — A
= 2
] e o e TPy
= 2} ,
! k (scaled + shifted) g
= 0 ]
5 1 2 3 4 5

s/ L, |Lattice Periods|

Accelerator Physics
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Contrast of Larmor-Frame and Lab-Frame Orbits
+ Same 1nitial condition

Larmor-Frame Coordinate Orbit in transformed x-plane only

= _10f . r (scaled + shifted)

0 1 4 5

2 3
s/ L, |Lattice Periods|
Lab-Frame Coordinate Orbit in both x- and y-planes

1.0
— 05¢
= 00
= -05¢}
= _:'Ig’ It # (scaled + shilted) z Calculate
20k o , | | ] usIng
0 1 2 3 4 5
s/ L, |Lattice Periods] transfer
matrices in
— Appendix C
i _;'g‘ 1 r (scaled | shifted)
e
0 1 2 3 4 5
s/ L, [Lattice Periods]
12
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Contrast of Larmor-Frame and Lab-Frame Orbits

+ Same initial condition
Larmor-Frame Angle

4; 'l‘ll""llll;ll
< 2f
SO';
= 2
|—_4§
By O
_8‘

T
e Calculate
g === using
s/ L, |Lattice Periods| transfer
af ' ' : matrices in
2¢ \ : .
T Ry e e Appendix C
= 4 - v (scaled + shifted) _
= 6} " —
S0 1 2 3 a4 s

s/ L, |Lattice Periods]
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Additional perspectives of particle orbit in solenoid transport channel
+ Same 1nitial condition
Radius evolution  (Lab or Larmor Frame: radius same)

1.0: r
— 05¢
§ 00f--------Moo-_ e P L EET T
;& o5F - r (scaled 4 shifted)
?--_1.05:7 Q ——E
o 1 2 3 4 5

s/ L, |Latticc Periods]
Side- (2 view points) and End-View Projections of 3D [Lab-Frame Orbit

{;\%
N o]
v )
_ {M \ — /\ — Calculate
%‘ . W \\\ o _ using
v j | | transfer
° : Peroid 4 g i - matrices iIl
| e o | Appendix C
= 17&'1‘!:“"\ \ et
E 0 - -15 L L L L
T ; _M \ 2 =
: 5 : x[mm]

Peroicd
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Larmor angle and angular momentum
of particle orbit in solenoid transport channel

+ Same 1nitial condition s B.o(s)
_ _ z
Larmor Angle (s) = —/ ds kr,(5) kr(s) = 2[B))]
Si
0 HLarmor Angle
?_100 _ T —
= —
i 3  (scaled | shilted) \__
;—400;— —_— e —_—
0 1 2 3 4 5

s/ L, [Lattice Periods|
Angular Momentum and Canonical Angular Momentum (see Sec. S2G )

5 y_JT —
§0 /— \ /‘
| | N =
E _10 _ B ("Llf‘d + shifted) _
B Tz 3 4 s

s/ L, [Lattice Periods] /]
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Comments on Orbits:
* See Appendix C for details on calculation
- Discontinuous fringe of hard-edge model must be treated carefully if
integrating in the laboratory-frame.
* Larmor-frame orbits strongly deviate from simple harmonic form due to
periodic focusing
- Multiple harmonics present
- Less complicated than quadrupole AG focusing case when interpreted
in the Larmor frame due to the optic being focusing in both planes
* Orbits transformed back into the Laboratory frame using Larmor
transform (see: Appendix B and Appendix C)
- Laboratory frame orbit exhibits more complicated x-y plane coupled
oscillatory structure
+ Will find later that if the focusing is sufficiently strong, the orbit can
become unstable (see: S5)
+ Larmor frame y-orbits have same properties as the x-orbits due to the equations
being decoupled and 1dentical in form in each plane
- In example, Larmor y-orbit is zero due to simple initial condition in x-plane
- Lab y-orbit is nozero due to x-y coupling
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Comments on Orbits (continued):
+ Larmor angle advances continuously even for hard-edge focusing
+ Mechanical angular momentum jumps discontinuously going into and out of the
solenoid
- Particle spins up and down going into and out of the solenoid
- No mechanical angular momentum outside of solenoid due to the
choice of intial condition in this example (initial x-plane motion)
* Canonical angular momentum F is conserved in the 3D orbit evolution
- As expected from analysis in S2G
- Invariance provides a good check on dynamics
- Py in example has zero value due to the specific (x-plane)
choice of initial condition. Other choices can give nonzero values
and finite mechanical angular momentum in drifts.

Some properties of particle orbits in solenoids with piecewise k = const
will be analyzed in the problem sets

/]
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S2F: Summary of Transverse Particle Equations of Motion

In linear applied focusing channels, without momentum spread or radiation, the
particle equations of motion in both the x- and y-planes expressed as:

1" (Vbﬁb)/ / . q 0
" (Bs) T ra(8)e = - mApBRc? Ox
7 (Vbﬁb), / . q 0
" (7608p) F (sl - my R Oy

k. (s) = x-focusing function of lattice

Kky(s) = y-focusing function of lattice

Common focusing functions:

Continuous: o (s) _ /{y( 3) _ k%o — const

Quadrupole (Electric or Magnetic):
a(s) = —#iy () = A(s)
Solenoidal (equations must be interpreted in Larmor Frame: see Appendix B):

a(s) = riy(s) = Ai(s)
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Although the equations have the same form, the couplings to the fields are
different which leads to different regimes of applicability for the various focusing
technologies with their associated technology limits:
Focusing:
Continuous:
Kz(S) = ky(s) = k%() = const
Good qualitative guide (see later material/lecture)
BUT not physically realizable (see S2B)

Quadrupole:
G(s) Electric Bol — My By
c ? Pl —

) = = { B e =
B’ agnetic

G is the field gradient which for linear applied fields is:

4 a
OE% oOF 2V i
— 52 = G Y = =1 Electric
G(S) < €T y Tp
ﬁBg . 8BZ __ B, £
oy T ox T Magne 1C

Solenoid:

=t =i =[] ~[5] w22
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It 1s instructive to review the structure of solutions of the transverse particle
equations of motion in the absence of:

8¢  O¢
Space-charge: — ~ — ~
o (15s)
Acceleration: Y8y =~ const — WVesb) ~ ()
(70p)

In this simple limit, the x and y-equations are of the same Hill's Equation form:

" 4+ Kkp(s)zr =0
y"' + ky(s)y =0

+ These equations are central to transverse dynamics in conventional

accelerator physics (weak space-charge and acceleration)
- Will study how solutions change with space-charge in later lectures

In many cases beam transport lattices are designed where the applied focusing
functions are periodic:

Kz (s + Lp) = Ka(s)
kiy(s + Lp) = ky(s)

L, = Lattice Period
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Common, simple examples of periodic lattices:

i Periodic Solenoid

wa(s)[ | (e = k) h o .
— —— -
| | | | | 5
! ! : —— | -
d/2 € d/2id2n d=(1-nlk,
A iPeﬂodic FODO Quadrupole t=nly
Kl S) (Ko = —ky) .
| — 2 — ,"{, ———— e - —
d 4 d
F Quad [ .H.__..
| , ' -
. | S
- D Quad i
A ,
S S S -
- L - — (1 —
: N | d = (1 W)L'p/g
i Lattice Period | 0 — ﬁLp/Q
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However, the focusing functions need not be periodic:

+ Often take periodic or continuous in this class for simplicity of interpretation
Focusing functions can vary strongly in many common situations:

+ Matching and transition sections

+ Strong acceleration

+ Significantly different elements can occur within periods of lattices in rings

- “Panofsky” type (wide aperture along one plane) quadrupoles for beam
insertion and extraction in a ring

Example of Non-Periodic Focusing Functions: Beam Matching Section
Maintains alternating-gradient structure but not quasi-periodic

Matching Section x—Focusing Strength

1.0F :
0.8
; Example corresponds to

@ 0.6f : :
= : High Current Experiment
S o04f : .
2 ool Matching Section
E; 0.0f (hard edge equivalent)

at LBNL (2002)

_0.2f

—04f ]

0 50. 100. 150. 200. 250. 300. 350.
s [em]
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S2G: Conservation of Angular Momentum 1n

Axisymmetric Focusing Systems

Background:
Goal: find an invariant for axisymmetric focusing systems which can help us
further interpret/understand the dynamics.

In Hamiltonian descriptions of beam dynamics one must employ proper canonical
conjugate variables such as (x-plane):

r = Canonical Coordinate + analogous
P, =p, +qA, = Canonical Momentum y-plane

Here, A denotes the vector potential of the (static for cases of field models
considered here) applied magnetic field with:

B=V x A
For the cases of linear applied magnetic fields in this section, we have:
Zg(yQ — z?), Magnetic Quadrupole Focusing
A=< X %Bzoy + y%Bzox, Solenoidal Focusing
0, Otherwise
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For continuous, electric or magnetic quadrupole focusing without acceleration
(vs8p = const) , itis straightforward to verify that x,x" and y,y’ are canonical
coordinates and that the correct equations of motion are generated by the
Hamiltonian:

1 1 1 1 70
H — _ /2 - /2 — Koy 2 = 2
d 8HL d 6HJ_
— 0 = —r =
ds ox' ds 0y’
iaz’:—aHL d ,_ _OHy
dS (9:13 dsy o 8y

Giving the familiar equations of motion:

O

2"t g = —

i m~; BEc? Ox
0

o+ gy = ——2 ¢

m, By c? Oy
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For solenoidal magnetic focusing without acceleration, it can be verified that we

can take (tilde) canonical variables:

+ Tildes do not denote Larmor transform variables here !

T =2 y =
Y _ mpPec
~/ / BZO ~/ / Bz() [B,O] —
— T — Y Yy =y + x q
2By 2By
With Hamiltonian:
- 1 B.o -\’ B.o .\’ q9
H =- (55’+ - g) +<gj’— T +
2 2[Bp] 2[Bp) moy; B
d . @Iz]L i~ _ OH | Caution:
%x — 07 ds Y= ag/ Primes dp not mean d/ds n
tilde variables here: just
i H o _ OH | i ~ OH | notation to distinguish
ds~ o1 ds Y 83’] “momentum” variable!
Giving (after some algebra) the familiar equations of motion:
2! B;O(S)y . BzO(S) y/ _ q %
2[Bp] [Bp) my, By c? Ox
Bl(s) | B:o(s) g 09
/! 20 Z /
Yy + T+ T ==
2(Bp] [Bp] my, B ¢* Oy

SM Lund, USPAS 2018
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Canonical angular momentum

One expects from general considerations (Noether's Theorem in dynamics) that
systems with a symmetry have a conservation constraint associated with the
generator of the symmetry. So for systems with azimuthal symmetry (0/00 = 0),
one expects there to be a conserved canonical angular momentum (generator of
rotations). Based on the Hamiltonian dynamics structure, examine:

Pi=xxPl-z=xx(p+qA)] -z

This 1s exactly equivalent to
+ Here 7V factor is exact (not paraxial)

Py = (xpy — ypa) + q(xAy — yA,)
= 7(po + qAg) =m0 + qr Ay

Or employing the usual paraxial approximation steps:

Py ~ mypBec(zy’ — y2') + q(rAy — yAs)
= myBper?f’ + qrig
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Inserting the vector potential components consistent with linear approximation
solenoid focusing in the paraxial expression gives:
+ Applies to (superimposed or separately) to continuous, magnetic or electric
quadrupole, or solenoidal focusing since Ay % (0 only for solenoidal

focusing
qB.
Py = mypfpe(zy’ —ya') + — = (2® + )
B,
_ m’ybﬁb(:erH’ i q ‘ 0,.2

For a coasting beam (7,8, = const), it is often convenient to analyze:
+ Later we will find this 1s analogous to use of “unnormalized” variables used in
calculation of ordinary emittance rather than normalized emittance

Py / / Bo 2 2 mYpByC
= zy —yx’ + <+ Bp| =
MY ByC vy Q[BP]( V') Bl q
B
2N/ 20 2
=r°0 + r
2[Bp)
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Conservation of canonical angular momentum

To investigate situations where the canonical angular momentum is a constant of
the motion for a beam evolving in linear applied fields, we differentiate %y with

respect to s and apply equations of motion

Equations of Motion:
Including acceleration effects again, we summarize the equations of motion as:
+ Applies to continuous, quadrupole (electric + magnetic), and solenoid

focusing as expressed
+ Several types of focusing can also be superimposed

- Show for superimposed solenoid

" (/Ybﬁb) v+ kor — ;/zO( )y . Bz()(s) y/ _ q 8¢
(wh) T 2(By) [Bp] - m;BEc? Ox
(%Bb)' b+ 20(8) n Bzo(s) ./ _ q 09
F ) T B (B T T iR o

k3, = const, Continuous Focus (ky = k)
By = MY BpC K (8) = ¢ 52%2/0]7 Electric Quadrupole Focus (k, = —ky)
1 \ %, Magnetic Quadrupole Focus (k, = —ky)

Accelerator Physics 28
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Employ the paraxial form of Fy consistent with the possible existence of a
solenoid magnetic field:
+ Formula also applies as expressed to continuous and quadrupole focusing

Py = myBc(zy’ — ya') + 52 (2 + y)
Differentiate and apply equations of motion:
+ Intermediate algebraic steps not shown

d / / / /! 17
@PQ = mc(y) (xy" — yx') + me(yf) (zy” — ya™)
B/
b B50(2 4 ) 4 qBaar! + 1)
q O¢ 3¢>
= TC Ry — Ry |2Y — L — Y5
el —mlay — (250~ v
L op o 00
1) Rz = Ry 2)xa—y—y%—%—0

+ Valid continuous or solenoid focusing
+ Invalid for quadrupole focusing

d
— Py =0 — Py = const
ds

SM Lund, USPAS 2018 Accelerator Physics 29

+ Axisymmetric beam




For:
+ Continuous focusing
+ Linear optics solenoid magnetic focusing
+ Other axisymmetric electric optics not covered such as Einzel lenses ...

Py = mypBpc(xy’ — yx') + qBTZO(a:z + 9?) = const

myyBpc(ry’ — yr') = Mechanical Angular Momentum Term

quO
2

In S2E we plot for solenoidal focusing :
* Mechanical angular momentum o zy’ — yx’
+ Larmor rotation angle 1)
+ Canonical angular momentum (constant) P
Comments:
+ Where valid, Py = const provides a powerful constraint to check dynamics
+ If Py = const for all particles, then (FPy) = const for the beam as a whole
and it is found in envelope models that canonical angular momentum can act
effectively act phase-space area (emittance-like term) defocusing the beam
+ Valid for acceleration: similar to a “normalized emittance”: see S10

(z* + y*) = Vector Potential Angular Momentum Term

SM Lund, USPAS 2018 Accelerator Physics 30



Example: solenoidal focusing channel

Employ the solenoid focusing channel example in S2E and plot:
* Mechanical angular momentum o zy’ — yz’
*+ Vector potential contribution to canonical angular momentum o Bq (5132 + yz)
+ Canonical angular momentum (constant) Py
P 0 / / BZO
=Ty —yYr +
M OpC 2[Bp]

(2 + y*) = const = Canonical
Angular Momentum

— 2y’ — y2’ = r?#’ = Mechanical Angular Momentum

BzO
2[Bp]

(2 + y%) = Vk(2? + y?) = Vector Potential Component
Canomcal Angular Momentum

'\ - ~.
L J Y
# (scaled + shifted)

1 1 1 1 I 1 I 1 1 I 1 1 1 1 ﬁ_
1 2 3 4 5

s/ L, [Lattice Periods]
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Comments on Orbits (see also info in S2E on 3D orbit):
+ Mechanical angular momentum jumps discontinuously going into and out of the
solenoid
- Particle spins up ( &’ jumps) and down going into and out of the solenoid
- No mechanical angular momentum outside of solenoid due to the
choice of intial condition 1n this example (initial x-plane motion)
+ Canonical angular momentum P is conserved in the 3D orbit evolution
- Invariance provides a strong check on dynamics
- Py in example has zero value due to the specific (x-plane)
choice of initial condition of the particle. Other choices can give
nonzero values and finite mechanical angular momentum in drifts.
+ Solenoid provides focusing due to radial kicks associated with the “fringe” field
entering the solenoid
- Kick is abrupt for hard-edge solenoids
- Details on radial kick/rotation structure can be found in Appendix C
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Alternative expressions of canonical angular momentum

It 1s insightful to express the canonical angular momentum in (denoted tilde here)
in the solenoid focusing canonical variables used earlier in this section and
rotating Larmor frame variables:
+ See Appendix B for Larmor frame transform
+ Might expect simpler form of expressions given the relative simplicity of the
formulation in canonical and Larmor frame variables

Canonical Variables:

8
|
8
Nag!
|
Ny

. B.o . B.o
I z Y y/ _ y/ + 20,
2[Bp) 2[Bp)
Py / / B.o 2 2
— =2y —Yr + x” +
— j'jg/ _:&5{:/

* Applies to acceleration also since just employing transform as a

definition here
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Larmor (Rotating) Frame Variables:

Larmor transform following formulation in Appendix B:
+ Here tildes denote Larmor frame variables

"2 ] [ cost 0 —sineg 0 BEE U(s) :—/ ds kr,(3)
x’ _ | krsiny cost)  k, cosw —sin Z’ Si
Y sin 1) i 0 coszp 0 i Y i (s) = B.o(s)
Yy | —kpcost sintg  kpsind  cos) Ly AN 2| Bp]
gives after some algebra:
2 2 _ A2 | ~2
— T+ Y =" +y
PR B.o .o . .
vy —yx' = &) — G — 5= (F + )
. 2|Bp)
Showing that:
Py / / B.g 2
=Ty —Yr + T+ vy
MY pC Q[Bﬂ]( )
=2y — 27’

+ Same form as previous canonical variable case due to notation choices.
However, steps/variables and implications different in this case !
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Bush's Theorem expression of canonical angular momentum
conservation

Take:

BY=V x A

and apply Stokes Theorem to calculate the magnetic flux W through a
circle of radius r:

\IJ:/deB“-i :/de(VxA)-Z:%A-dZ

For a nonlinear, but axisymmetric solenoid, one can always take:
+ Also applies to linear field component case

A =0Ay(r, 2)
8Ag 10
— a __ _f- "7 7 _
B P +Z7°(97“ (rAg)
Thus:
U = 27mrAy
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// Aside: Nonlinear Application of Vector Potential

Given the magnetic field components
By(r,z)  B(r2)

the equations

0
Bl (r,z) = —&AQ(T, 2)
. 10
Bi(r,z) = ;E[TAG(T»Z)]

can be integrated for a single i1solated magnet to obtain equivalent
expressions for Ag

Ay(r, 2) = — / dz B (r, 3)

— 0

1 T
Ag(r, 2) = X / diF B (F, 2)
0

r

* Resulting Ag contains consistent nonlinear terms with magnetic field
//
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Then the exact form of the canonical angular momentum for for solenoid

focusing can be expressed as:
+ Here 7/ factor is exact (not paraxial)

Py = mAyr20 + qrAy

‘ )
= myrf + iz
2T

This form 1s often applied in solenoidal focusing and 1s known as “Bush's
Theorem” with

Po = m7r29 + % = const

+ In a static applied magnetic field, v = const further simplifying use of eqn

+ Exact as expressed, but easily modified using familiar steps for paraxial form
and/or linear field components

+ Expresses how a particle “spins up” when entering a solenoidal magnetic field
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Appendix B: The Larmor Transform to Express Solenoidal
Focused Particle Equations of Motion in Uncoupled Form

Solenoid equations of motion:

" (’Vbﬁb)/x/ _ B;O(S)y _ B.o(s) Y = q O
(V5.5p) 2|Bp) |Bp] - mPBRc? Ox
7 (Vbﬁb)/ / ;O(S) BzO(S) / q aQb
+ + T+ T =
T By 2B T Bl T T mapBRc Oy
B.o(s) = By(r =0,z = s) = On-Axis Field
By = 20 quc — Rigidity

To simplify algebra, introduce the complex coordinate
Note* context clarifies use of i

Z=T 1y 1 =v—l1 (particle index, initial cond, complex i)
Then the two equations can be expressed as a single complex equation

(Vbﬁb)/ r ,,20(3) .Bzo(s) ; q ( gb ¢)
(who) = T 2B 2T [Bp 2T T mie "By

Bl
SM Lund, USPAS 2018 Accelerator Physics
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If the potential is axisymmetric with ¢ = ¢(r)

06 06 _ 092z >
— = r =%+ y?
8:1: 8y or r vV Y
then the complex form equation of motion reduces to:

20(8) B.o(s) ;o q 8qbz
S Bp] =7 m%ﬁbc2 or

poo (wB)
£ (Bs) - o 2|Bp)

Following Wiedemann, Vol II, pg 82, introduce a transformed complex variable that

1s a local (s-varying) rotation:

(s) = phase-function
(real-valued)

SR

B

B2
39
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7 ~ 11 Il T~ T12~\ i
(g + 20’7 + iz — 2&) eV

|2
|

and the complex form equations of motion become:

_ ~ Bz ’

Bp) (7650)
__ 2 Beo o <~// By (7605p)’ ~,)] .
B T e T e )2
q 09z

mry; B2c? Or r

Free to choose the form of 1 Can choose to eliminate imaginary terms in i( .... )
in equation by taking:

w B o 20 B.o (70)
[T = V5B T 2B ()

B3
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Using these results, the complex form equations of motion reduce to: B4

~ 1/ (’Vbﬁb)/ ~/ B ? q 09 z
z e 2| Bp] mwbﬁbc2 or r

|22

Or using z = x + 1y , the equations can be expressed in decoupled
x, y Vvariables in the Larmor Frame as:

o (V65p)’ o . ¢ 09I
' (%5&;) T rls)E = T mAPB22 Or v
7+ (/Vbﬁb)/ , - q 8¢ y
g (%Bb) tals)y = CmRB2c2 Or r
_ _ Buo(s)  wel(s) Bl — Yo Bpmc
M ZHH ) hale) = o) = )y - 2
— Larmor Wave-Number

Equations of motion are uncoupled but must be interpreted in
the rotating Larmor frame
+ Same form as quadrupoles but with focusing function same sign in each plane
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The rotational transformation to the Larmor Frame can be effected by integrating

the equation for )/ — _ sz]
2|Bp

P(s) = —/:dis“ gf%(j) = /:d§ kr(3)

7 7

Here, S; 1s some value of s where the initial conditions are taken.
+* Take s = s; where axial field 1s zero for simplest interpretation
(see: pg B6)

Because

&/ _ BzO s We
2[Bp] 2’)/1,5(,6

the local £ — ¥ Larmor frame is rotating at %2 of the local s-varying cyclotron
frequency
+*If B,o9 = const, then the Larmor frame is uniformly rotating as is well
known from elementary textbooks (see problem sets)

B5
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The complex form phase-space transformation and inverse transformations are:

~ ~

z = ze™ Z=ze W
(2’ + M’Z) e’V Z = (z’ — Z@Z’z) e~V
2=+ 1y 2=+ @Z’:—kL
é/:$/+iy/ Z/:C'ifj/_l_ig/

Apply to:
+ Project 1nitial conditions from lab-frame when integrating equations
+ Project integrated solution back to lab-frame to interpret solution

If the 1nitial condition s = S; 1s taken outside of the magnetic field where
B.o(s;) =0, then:

(s =s;) = x(s = s;) T (s=s;) =2 (s =s
(s =s;) =y(s=s; J (s =s;) =19 (s=s;
Z(s =s;) = z(s = ;) Z(s=s;) =2 (s=s;)
B6
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The transform and inverse transform between the laboratory and rotating frames
can then be applied to project initial conditions into the rotating frame for
integration and then the rotating frame solution back into the laboratory frame.

Using the real and imaginary parts of the complex-valued transformations:

- T
x’ ~ T’
= M., (s|s;) - | -
. ol | 5
N N
coszZ 0
~ kr siny COS
Melslsd =1 ng o
—kr, COS@Z Singz
coszﬁ 0
M:1(8|SZ) kr, ?mfb COS
—siny 0 .
kr cos®y —siny

- T
i‘/ ~ _1 33/
g | =M Gls)- |

—Sinlz 0 |

kr cos®y —siny

COS 0

krsiniy cosy

sin 0 |

—kr, cosy siny

COs Y 0

kr siny cos |

Here we used:
V' = —kp,

SM Lund, USPAS 2018

and it can be verified that:

—1
T

M

~

= Inverse| M,

B7
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Appendix C: Transfer Matrices for Hard-Edge
Solenoidal Focusing

Using results and notation from Appendix B, derive transfer matrix for

single particle orbit with: * Details of decompositions can be found in: Conte
*» No space-charge and Mackay, “An Introduction to the Physics of

+» No momentum sprea d Particle Accelerators” (2nd edition; 2008)

First, the solution to the Larmor-frame equations of motion:

/
'+ Mfé’—km(s)fé:o B2
(f)/bﬁb) K — k2 _ z0
/7 (/Yb/Bb)/ / ( ) . Q[BIO]
"+ Yy + K(s)y =0
(765)
Can be expressed as:
- - -
g = ML(Zl,Z@) . g
-g/_z _g,_z:zi

+ In this appendix we use z rather than s for the axial coordinate since there are

not usually bends in a solenoid Cl
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Transforming the solution back to the laboratory frame:

From project of initial conditions
to Larmor Frame

= M, (z]2;) - Mp(2]2) - M7 (2] ) -

/ /

— y - Z2=Z;

= [ Identity Matrix

+ Here we assume the initial condition 1s outside the maglnetic field so that there
is no adjustment to the Larmor frame angles, i.e., M.~ (z;]z;) = I

< K8 8

€T
ZUI
Yy

L - Z - - Z2=2Z;

M(2[2:) = My (2|2) - Mg (2]z2)

+ Care must be taken when applying to discontinuous (hard-edge) field models
of solenoids to correctly calculate transfer matrices
- Fringe field influences beam “spin-up” and “spin-down”
entering and exiting the magnet C2
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Apply formulation to a hard-edge solenoid with no acceleration [ (V55)" = 01:
B.y(z)
A

B, B.o(2) = B, [0(2) — O(2 — 0)]

—

B, = const = Hard-Edge Field
¢ = const = Hard-Edge Magnet Length

- Note coordinate choice: z=0 is start of magnet
z=10 2= “

Calculate the Larmor-frame transfer matrix in 0 < z < /¢ :

53// + kL:E =0 L qB:0 B.g é\z t
;= = — = cons
T k25 =0 2veBemec  2[Bp|  2|Bp]
- +
0" <z<d Subtle Point:
e S/kr 0 0 Larmor frame transfer
M, (2]07) = | - kS C 0 0 matrix 1s valid both sides
L% |0 0 C S/kr of discontinuity in
| 0 0 —kpS C focusing entering and
exiting solenoid.
C =cos(krz) S =sin(kpz)

SM Lund, USPAS 2018
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The Larmor-frame transfer matrix can be decomposed as:
+ Useful for later constructs

e, S/kr 0 0
) B kLS C 0 0 F(z) 0
M (2]07) = 0 0 C S/kr | — [ 0 F(z) ]
I 0 0 —krS C i
with
. [o® S(2)/krL _ |00
Fz) = [ —kpS(z) C(z) ] 3 [ U9 ]

Using results from Appendix E, F can be further decomposed as:

F(z) _ - C(Z) g('z)/kL ]

| —krS(2) 2)
B [ 1 étan(kgz) . 1 0 . 1 étan(kgz)
- | 0 1 —kr Sin(kLz) 1 0O 1

— Mdrift (Z) : Mthin—lens (Z) ) Mdrift (Z)
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Applying these results and the formulation of Appendix B, we obtain the rotation
matrix within the magnet 0 < 2 < /¢
* Here we apply M, formula with ) = —k » for the hard-edge solenoid

C o S 0 ] Comment: Careful
ML (2]0-) = —krS C kL,C S with minus signs!
" -S 0 C 0 Here, C and S here
| kO =S —kpS C | have positive

, , arguments as defined.
With special magnet end-forms:

» Here we exploit continuity of M, in Larmor frame

Entering solenoid
1 0 0 0] eDirect plug-in from
M.,.(07]07) = 8 (1) 71% 8 formula above for M.,
_ ot
kp 00 1| az=0
Exiting solenoid
"1 0 0 0" *Slope of fringe field
5 _ 1s reversed so replace
vty = | VL TR 0 - |
0 0 1 0 in entrance formula:
L kr, 0 O 1 ] kL — —]CL C5
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The rotation matrix through the full solenoid is (plug in to previous formula for

M, (2]07) ):
[ cos D 0 sin® 0
~ _ 0 cos ¢ 0 sin ¢ Icosd Isin®
M,(£+]07) = —sin® 0 cos® 0 - [ —Isin® Icosq)]
0 —sin® 0 cos @
- B I — 1 0
b=kt — 10 1

and the rotation matrix within the solenoid 1s (plug into formula for M, (2|07)
and apply algebra to resolve sub-forms):

Y - |0 C(z) 0 S(z) 0 1 kr 0
|0 —5(2) 0 C(z) 1 L —kr, 0 O 1|
_ | CL S| [T K
[ By
— MT(Z|O+) ‘ 1\N/Ir(0+|0—) 0O< z< /¥

Note that the rotation matrix kick entering the solenoid i1s expressible as

v, 000 = | L 1

SM Lund, USPAS 2018
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The lab-frame advance matrices are then (after expanding matrix products):

Inside Solenoid 07 < z < £~
M(z|07) = M, (2|07 )M (2[07)
[ cos? ¢ ﬁ sin(2¢) 1 sin(2¢) é sin® ¢
_ | —krsin(2¢) cos(2¢) kr cos(2¢)  sin(2¢)
— 2 sin(2¢) —é sin® ¢ cos? i sin(2¢)
| —kp cos(2¢) —sin(2¢) —kp, sin(2¢) cos(2¢) |
qb = kLZ
_  C(2)I  S(»)1 ] . [ I K ] [ F(z) O ]
—S(z)I C(2)1 -K I 0 F(z)
_ | C(I=-5>F)K  C(z)K+5(2)1 ] [ F(z) O ]
—C(2) K—-=S(I CI-SkK 0 F(2)
_ | C(2)F(2) = S()K -F(z) C(z)K-F(2)+ S(z)F(z ]
—C(z2)K-F(z) — S(2)F(2) C(2)F(z) —S(2)K-F(2)

» 2" forms useful to see structure of transfer matrix
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Through entire Solenoid z = ¢
M(¢F07) = M,.(¢7[07)Mg(¢+]07)

" cos? @ ﬁ sin(2®) 5 sin(2®) é sin® ® ]
| —EEsin(29) cos? @ —krsin®®  1sin(20)
| —3sin(29) —% sin®®  cos? ® ﬁ sin(29)
| kp sin® ® —1sin(20) —ELsin(20) cos? @ )
b = k‘Lf

[ cos®I  sin @I | F(0)
—sin ®I  cos I 0

| cos®F(¢)  sin®F(¥) ]
| —sin®F(¢) cos®F(¥)

o |

» 2" forms useful to see structure of transfer matrix

Note that due to discontinuous fringe field:
1 0 0 0
M(OF0-) — _ T ge going in
(07107) 0 0 1 0 7 kicks angles of beam
i —k L 0 O 1 CS8

52
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M(£~[07) #£ M(T|07) Due to fringe exiting
kicking angles of beam

In more realistic model with a continuously varying fringe to zero, all transfer
matrix components will vary continuously across boundaries
- Still important to get this right in idealized designs
often taken as a first step!

Focusing kicks on particles entering/exiting the solenoid can be calculated as:

Entering: _ — —
2(07) =x(07)  2/(07) =2'(07) +kzy(07)
y(07) =y(07)  ¢'(07)=y'(07) = kzx(07)
Exiting: x(€+) _ .CE‘(K_) $/(€+) _ le/(6—) - kLy(g_)
y(£) = y(£7) y'((7) =y (€7) + kpa(€7)

+ Beam spins up/down on entering/exiting the (abrupt) magnetic fringe field

*+ Sense of rotation changes with entry/exit of hard-edge field. C9
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The transfer matrix for a hard-edge solenoid can be resolved into thin-lens
kicks entering and exiting the optic and an rotation in the central region of
the optic as:

M(£7]07) = M,(£+]07 )M (¢+]07)

i COSQ(I) ﬁsin(Q(I)) 2 sin(29) %sinzcb ]
B —7 sin(2®) cos® @ —krsin®®  1sin(20)
| —1sin(29) —% sin®®  cos? @ ﬁsin@@)
| kp sin® @ —1sin(20) —ELsin(2®) cos® @ i
1 0 0 0] [1 zsin@2®) 0 Lsin®® ][1 0 0 0]
10 1 —kr O 0 cos(29) 1 sin(29) 0 1 kr O
10 01 0 =sin®® 1 5 sin(29) 0 01 0
|k 0 O 1 | —sin(2®) 0 cos(2P) | [ =k O 0O 1

0
1
= M(£F]6-) - M(£-|0F) - M(0*]07)

where & = k¢

+ Focusing effect effectively from thin lens kicks at entrance/exit of solenoid as
particle traverses the (abrupt here) fringe field

C10
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The transfer matrix for the hard-edge solenoid is exact within the context of linear
optics. However, real solenoid magnets have an axial fringe field. An obvious
need is how to best set the hard-edge parameters B., ¢ from the real fringe field.

BzO(z)

Real Magnet

Hard-Edge and Real Magnets
axially centered to compare

-

= —£/2 z=£/2 =

Simple physical motivated prescription by requiring:

1) Equivalent Linear Focus Impulse / dz k% o / dzB2,

> —~2
— / dz B2,(2) = (B,

— o0

2) Equivalent Net Larmor Rotation Angle o / dz kj, o / dz B.g

— / dz B,o(2) 261/3\,2

— 0

Cll1
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N

Solve 1) and 2) for harde edge parameters B, ¢

=5 ffooodz Bgo(z)
o [ _dz Byo(2)

[ffooodz B.g (z)} i
ffooodz B (2)

{ =

C12
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Appendix D: Axisymmetric Applied Magnetic or Electric Field
Expansion

Static, rationally symmetric static applied fields E“, B® satisfy the vacuum
Maxwell equations in the beam aperture:

V-E*=0 VXE*=0 V-B=0 VxB*=0
This implies we can take for some electric potential ¢“and magnetic potential ¢"":
Ea:_v¢e Ba:_vqu

which in the vacuum aperture satisfies the Laplace equations:
V2 =0 V2™ =0

We will analyze the magnetic case and the electric case 1s analogous. In
axisymmetric (0/00 = 0) geometry we express Laplace's equation as:

10 ([ 9™\ | 9?¢™
VQ m r.zZ) = —— T _|_ — O
A = e ( r ) 0z 9
¢""(r, z) can be expanded as (odd terms in r would imply nonzero B, = — g ;n

atr =0):

P (1, 2) = Z fQV(Z)TQV = fo+ f27“2 + f4’l“4 + ...
v=0

where fo = ¢ (r = 0, z) is the on-axis potential D1
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Plugging ¢" into Laplace's equation yields the recursion relation for f,

(2v +2) fay2 + 4, =0

Iteration then shows that
m o (FD) 00, 2) N2
I(r2) =) (W2 0z (5)

v=0
Using BZ(r =0,z2) = B,o(z) = — (‘M%(O, ) and diffrentiating yields:
2

o,y O0bm (1Y P"TIBig(2) (!
Br(r.2) == or _Z( Dy —1)!  0z2v—1 (5)

a 0D, 0%Y B.o(2) /r\2v
Ba(r,2) == 0z Z ((V')) 8z2V( | (5)

V=

* Electric case immediately analogous and can arise in electrostatic Einzel
lens focusing systems often employed near injectors

* Electric case can also be applied to RF and induction gap structures in
the quasistatic (long RF wavelength relative to gap) limit. D2
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Corrections and suggestions for improvements welcome!

These notes will be corrected and expanded for reference and for use in future

editions of US Particle Accelerator School (USPAS) and Michigan State
University (MSU) courses. Contact:

Prof. Steven M. Lund

Facility for Rare Isotope Beams
Michigan State University

640 South Shaw Lane

East Lansing, MI 48824

lund @frib.msu.edu
(517) 908 — 7291 office
(510) 459 - 4045 mobile

Please provide corrections with respect to the present archived version at:
https://people.nscl.msu.edu/~lund/uspas/ap_2018/

Redistributions of class material welcome. Please do not remove author credits.
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