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S10: Acceleration and Normalized Emittance
S10A: Introduction

If the beam i1s accelerated longitudinally in a linear focusing channel,
the x-particle equation of motion is:

/ Analogous
bMb 0 :
x4 (%) T+ kpr = [ 1 5 ¢] equation holds
(7658%) mry; B2c? Ox iny
Neglects: In this class we will
*Nonlinear applied focusing fields neglect space-charge
+* Momentum spread effects with: ] ~0

Comments:
* Yy, Bp areregarded as prescribed functions of s set by the
acceleration schedule of the machine/lattice
* Variations in 7y, [ due to acceleration must be included in
and/or compensated by adjusting the strength of the optics via optical
parameters contained in Kz, Ky to maintain lattice quasi-periodicity
- Example: for quadrupole focusing adjust field gradients (see: S2)
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Acceleration Factor: Characteristics of
Relativistic Factor

v, Ultra Relativistic Limit 1
Vo Bb =

Vb
By, Nonrelativistic Limit 1 — 55

Beam/Particle Kinetic Energy:

En(s) = (W — 1)m02 = Beam Kinetic Energy

+Function of s specified by Acceleration schedule for transverse dynamics
*See S11 for calculation of &, and Y5y from longitudinal dynamics
and later lectures on Longitudinal Dynamics

Approximate energy gain from average gradient:

&L 257;—|—G(8—S7;)

&; = const = Initial Energy

G = const = Average Gradient

+Real energy gain will be rapid when going through discreet acceleration gaps

. vwmc?,  Ultra Relativistic Limit, v, > 1
p = .« e .
%m51?627 Nonrelativistic Limit, | 8,| < 1
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Comments Continued:
*»In typical accelerating systems, changes in ;3 are slow and the fractional
changes in the orbit induced by acceleration are small

- Exception near an injector since the beam is often not yet energetic
*The acceleration term:

(768s)"

— >0

(7580)

will act to damp particle oscillations (see following slides for motivation)

Even with acceleration, we will find that there 1s a Courant-Snyder invariant
(normalized emittance) that 1s valid 1in an analogous context as in the case without
acceleration provided phase-space coordinates are chosen to compensate for the
damping of particle oscillations
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Identify relativistic factor with average gradient energy gain:

Ultra Relativistic Limit: v, > 1, By ~1

& & G
Yo ot — = + —5(s—si)

(e . 1
(%B) % + (5 — s5) S — S
Nonrelativistic Limit: ‘5b| <1, =l
by = \/ mc2 2m02 (s = 5)

(8s)" By _ 1/2 1
— | (wB) B Y4 (s—si)  20s—s)

+Expect Relativistic and Nonrelativistic motion to have similar solutions

- Parameters for each case will be quite different
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[/l Aside: Acceleration and Continuous Focusing Orbits with Kk, = k%o = const
Assume relativistic motion and negligible space-charge:

(956)" % _ 1 9 _
(V55b) Vb (% — SZ) + s ox
Then the equation of motion z” + (%) t’' + kzx =0 reduces to:
(755)
z" + ! ' + k3, =0
R
This equation 1s the equation of a Bessel Function of order gero:
d’r 1dx § = kgos + kgo <— — S
—2 - d_ +x =0 G
de? " Ede & — ko
(71 = const (9 = const
r = (1 Jo (S) + C2YO (S) J, = ((1)rdir nd)Bessel Func
;o st kKin
v' = —CikpoJ1(£) — C2hipoa(E) Y,, = Order n Bessel Func
dJo(x)/dx = —J1(x) and same for Yj (2nd kind)
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Solving for the constants in terms of the particle initial conditions:

[ iz ] - [ iok(g;?h(&) )—/Ol-c(j;)lﬁ(fi) ] | [ g; ]
2= 1(s = ;) ¢

i = kﬁoa =&(s = s;)

Invert matrix to solve for constants in terms of initial conditions:

O |- 5[ i o] [ ]

A Ly
A = kgolYo(&)J1(&) — Jo(&:)Y1(&)]

r, = 2'(s = s;)

= |

1

Comments:
+ Bessel functions behave like damped harmonic oscillators
- See texts on Mathematical Physics or Applied Mathematics
+ Nonrelativistic limit solution is not described by a Bessel Function solution
- The coefficient in the damping term X x’ has a factor of 2 difference,
preventing exact Bessel function form
- Properties of solution will be similar though (similar special function)
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Using this solution, plot the orbit for (contrived parameters for illustration only):

kgo = % oo = 90° /Period & = 1000 MeV
P L,=0.5m G = 100 MeV/m
z(0) = 10 mm
S; — 0 1
2'(0) = 0 mrad dbi _

Y 1+ (G/E)(s — s4)

() " <l

hm“5[WTTWHNWWWAﬂﬂﬂﬂﬂﬂﬂﬂﬂﬂhﬂﬂﬂ[

5h I MUWV(U\NUWWVWVVWOO
s/ L, [Lattice Periods]

z'(s) ;8 ™~ \/m

mmmeTwTWﬂﬂﬂﬂﬂﬂﬂﬂmﬂﬂﬂﬂnnﬂﬂﬂnﬂ
o VATV T TV

-30 s/ L, [Lattice Periods|

» Solution shows damping: phase volume scaling ~ 1/(vy0p) =~ 1/ /1
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S10B: Transformation to Normal Form

“Guess” transformation to apply motivated by conjugate variable arguments

Here we reuse tilde variables to
denote a transformed quantity we

T =/ Wb choose to look like something
Then: familiar from simpler contexts
L
T = X

~/

L (wb) -
VY65 2 (76p)3/2

x//: 1 i’”— (’Ybﬂb)/ j/_l_ §(7b5b)/2 - (’Vbﬁb)”

€T =

1
VY650 (v68p)3/? 4 (852 2 (yfBp)3/2

~

The inverse phase-space transforms will also be useful later:

(78p)’

1
T = \/Wwhpx' + = x
" 2 \/75)
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Applying these results, the particle x- equation of motion with acceleration
becomes:

1 ()" (7B)" | - q 0¢

1
T+ |k + = — = T=— .
4 (wBs)* 2 (B) my; Bpc? OF

Note:
»Factor of b5 difference from untransformed expression 1n the space-charge
coupling coefficient

It 1s instructive to also transform the Possion equation associated with the space-
charge term:

0? 0?
<3fv2 Oy> >¢_ )

Transform:

9 (08 0\ (0% 0\ _ 5 0~
922 \oz oz ) \oroz )~ " oz2
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Using these results, Poisson's equation becomes:

O? 0?
o= ——T
0z2 07> Vb Pb€0

Or defining a transformed potential ¢

b = YBp¢
0? 0%\ -
—t—|=-L
012 8y2 €0

Applying these results, the x-equation of motion with acceleration becomes:

o [/{x N L(w8)” 1 (w8)"] ~ _ q 09

1
4 (wh)2 2 (Wb v _m%?@?(fz 0x

+Usual form of the space-charge coefficient with ’yg 55 rather than 75 B
is restored when expressed in terms of the transformed potential ¢
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An additional step can be taken to further stress the correspondence between the
transformed system with acceleration and the untransformed system 1in the
absence of acceleration.

Denote an effective focusing strength:

T(wB)? 1 (wB)”
4 (wBb)? 2 (Mhb)

Ry = Kg T

K incorporates acceleration terms beyond~yy, (4 factors already included in the
definition of Kz (see: S2):

( mvzgch , G=-0E;/0x = 0FE]/dy = Electric Quad. Grad.
b
Ky = X m’;]b%bc’ G = 0B; /0y = 0B, /0x = Magnetic Quad. Grad.

qB=0 By = Solenoidal Magnetic Field

| 4m By c?
The transformed equation of motion with acceleration then becomes:

. q 99
mry; 322 0
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The transformed equation with acceleration has the same form as the equation in

the absence of acceleration. If space-charge is negligible ( 9¢/0x ~ 0) we
have:

Accelerating System Non-Accelerating System

~1! ~ o~ /!
T+ Rex =0 — "+ kg =0

Therefore, all previous analysis on phase-amplitude methods and Courant-Snyder
invariants associated with Hill's equation in x-x' phase-space can be immediately
applied to & — &' phase-space for an accelerating beam

~ N 2
X ~ ~ ~1 ~ ~
<—> + (0@ — W, %)? = € = const
1

~1/ ~ o~
Wy + KWy — =5 =0
wCIZ

Wy (s + Lp) = W (8)

mé = Area traced by orbit = const
in -’ phase-space

*» Focusing field strengths need to be adjusted to maintain periodicity of Kz in
the presence of acceleration

- Not possible to do exactly, but can be approximate for weak acceleration
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S10C: Phase Space Relation Between Transformed and
UnTransformed Systems

It 1s instructive to relate the transformed phase-space area in tilde variables to the
usual x-x' phase area:

di @ di' = |J|dx @ da’

where J is the Jacobian: Inverse transforms
derived in S10B:
- OZX ox -
J =det| 9z, 9z T = /b
— 0T oZx ! ( 5 )/
- ox ox’ j/:mx/+§ YbPb .
VY65 0 Yob)

=det | 1 (y,8) = Vb0
2 \/bvbbﬁb vV V6.0
Thus:

dz @ dz' = VB dr ® da’
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Based on this area transform, if we define the (instantaneous) phase space area of
the orbit trance in x-x' to be 7€ “‘regular emittance”, then this emittance is
related to the “normalized emittance” €, in & — %’ phase-space by:

gw — /Vbﬁbeaz
= Normalized Emittance = ¢,,,

»Factor Y»0p compensates for acceleration induced damping in particle orbits
* Normalized emittance is very important in design of lattices to transport
accelerating beams
- Typically applied to measure beam quality when accelerating
- Designs usually made assuming conservation of normalized emittance
+ € emittance measured in x-x’ phase-space is often called “geometric
emittance” to help distinguish from normalized emittance €, measured in Z-Z'
* The “geometric emittance” determines the beam extent and focusability with
the betatron function (Tmax = v/ €23z) so damping of €z with acceleration
with conserved norm emittance (€, = const) improves focusability on target
- To extent €, grows, the improvement is degraded
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S11: Calculation of Acceleration Induced Changes in
gamma and beta
S11A: Introduction

The transverse particle equation of motion with acceleration was derived 1n a
Cartesian system by approximating (see: S1):

d dx | 1 0¢
— — ] ~ E< z X BY B X —
7 (mv oy ) gET + qfpcz +qB;v. X1z q% -
using
d Xm) 2 2 [ 7 (’Vbﬁb)/ / }
m— | v—— | @ myfic” | x| + X
to obtain:
/ BCL
X//_|_(765b) < = q E¢ 1+ q 5 x BY 4 qD, < x5
T (b)) T mBEET T myBe L mypBe
q 9,
v Bic? 0%
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To integrate this equation, we need the variation of 3, and 7 = 1/4/1 — 57
as a function of s. For completeness here, we briefly outline how this can be done

by analyzing longitudinal equations of motion. More details can be found in
lectures to follow on Longitudinal Dynamics.
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S11B: Solution of Longitudinal Equation of Motion

Changes in ~; 3;, are calculated from the longitudinal particle equation of motion:
+ See equation at end of S1D

d dz 00
— | my— |~ qFE! — qv.B; —v,B: — g
Term 1 Term 2 Term 3 Neglect Rel to Term 2
Using steps similar to those in S1, we approximate terms:
d (dz dz _ ~
d 3 d
a — X~ DpC—
Term 2: iES ~_4 0¢ dt ds
m m 9s |,_,_o

®“ is a quasi-static approximation accelerating potential (see next pages)

q a dx dy .
Term3:  —q(veBy —vyBy) = — (dtBy at ) =0

* Transverse magnetic fields typically only weakly change particle energy and
terms can typically be neglected relative to others
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The longitudinal particle equation of motion for ~;, (3 then reduces to:

By (v65p)" = — 2_0¢"

mc? 0s

x=y=0

Calculate:

, 1\ B ,
k <M> =Gy~ B

First apply chain rule, then use the result above twice to simplify results:

—  Bo(B) = B + 185,
= Bi%, By + 1868, = (1 + 72 B5) 18685 = i, Bv 3y

7
Giving: L
fy/ o q 09
I = —
me? 9s |,_,_g

Which can then be integrated to obtain:

Vo = —%(ba(’r =0,z = s) + const
mc
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We denote the on-axis accelerating potential as:

Vis) =o' (x=y=0,z=s)

+Can represent RF or induction accelerating gap fields
See: Longitudinal Dynamics lectures for more details

Using this and setting V»(S = s;) = 7pi gives for the gain in axial
kinetic energy &, and corresponding changes in y;, (3 factors:

E, = (1 — )mc?® = q[V (s;) — V(8)] + Evi
W =1+ &/ (mc?) Evi = (s — 1)mc?
By = \/1 — 1/

These equations can be solved for the consistent variation of Y5(5), Bp($)
to integrate the transverse equations of motion:

/ BCL
X// _|_ (q/bﬁb) X/ — q Ea, _|_ q 2 % Ba, _|_ q z X/ % 2
T (B T mwBERT T myBe = myBee
q 9,

5
my; fEc? 0x
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Nonrelativistic limit results

In the nonrelativistic limit:

1 1
Vo >~ 14 555 B2 <1 E, = (v — 1)mec* ~ §m5§c2
and the previous (relativistic valid) energy gain formulas reduce to:
—mﬁbc = qV(s:) = V(s)] + &
Yo >~ 1 Ebi = §m557;02
2&
By =1\ —
mc

Using this result, in the nonrelativistic limit we can take in the transverse particle
equation of motion:

(wh) By, 18 1 qV(s)

(wB) ~ B 2&  2q[V(si) = V(s)] + &

SM Lund, USPAS, 2018 Accelerator Physics 21



Ultra-relativistic Iimit results

In the ultra-relativistic limit;:
Yo > 1 By ~ 1 Ep = (7 — 1)m(32 ~ fymeQ

and the previous (relativistic valid) energy gain formulas reduce to:

Ep >~ ypme® = q|V(s;) = V(s)] + Eps
5() ~ 1

Using this result, in the ultra-relativistic limit we can take in the transverse particle
equation of motion:

(wbBs) v & qV'(s)

v & qlV(si) = V(s)] +

+ Same form as NR limit expression with only a factor of Y2 difference; see also
S10A
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S11C: Longitudinal Solution via Energy Gain

An alternative analysis of the particle energy gain carried out in S11B can be
illuminating. In this case we start from the exact Lorentz force equation with time
as the independent variable for a particle moving in the full electromagnetic field:

dp - Comments:
dt =B +gbex B + Formulation exact in context
. == of classical electrodynamics
p= ’Ymgc 7= 1/\/1 —pB-p * v, B not expanded
+ E. B electromagnetic

Dotting mcE into this equation:

. d - . . 20
mcfB - —(cyB) = qcp E+q05°/%; x B
TN
Tﬁ 3|+ 26 8| =15 E
Then L
vy=(1-8-p)"12
Gives:

(B8 =1-14* 12 [B-8] =4/
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Inserting these factors:

1~ 1/ +4/2 =L G.E
N ( /7)Y + /Y — 3P
. q =
V=—pF" E
mc

Equivalently: & = (v — 1)mc?

d d -
—& = — — )mc?] = qcB-E
+ Only the electric field changes the kinetic energy of a particle
+ No approximations made to this point within the context
of classical electrodynamics: valid for evolving E, B consistent with the

Maxwell equations. . . .
Now approximating to our slowly varying and paraxial formulation:

d d Bz~ B =B
7 = P ~ £ & = (1 — )me?
dt ds Y =Y ~ & = (% — 1)me
and approximating the axial electric field by the applied component then obtains
d dt d
— &y~ — — — Dmc?] ~ qgE?
1550 = gy g 1 Ime] = b

which 1s the loni%itudinal equation of motion analyzed in S11B.
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S11D: Quasistatic Potential Expansion

In the quasistatic approximation, the accelerating potential can be expanded in the
axisymmetric limit as:

+*See: USPAS, Beam Physics with Intense Space-Charge; and Reiser, Theory

and Design of Charged Particle Beams, (1994, 2008) Sec. 3.3.
+See also: S2, Appendix D

We take:
0p?

E? = —
Ox

and apply the results of S2, Appendix D to expand ¢“in terms of the on-axis
potential in an axisymmetric (acceleration gap) system:

Allows us to use quasistatic
electrostatic approx

«— from V xE® =0

oo

. B (=1)Y 9*¥¢p%(r = 0, 2) (7“)2V i
¢ (T7 Z) _ z;) (V!)Q 8221/ 2 fi?lm V 'tE = (()1
V= OWS us to expan
Denote for the on-axis potential field in terms of
a(,. _ _ derivative of the on-
$"(r=0,2) = V(z) axis potential
1 07 1 o
o _ () 29 v 2.2y =9 v 2 . . 2\2 4 ..
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The longitudinal acceleration also result in a transverse focusing field
0
ox 1

a a
1 — L‘foc -

1 ltoc = Fields from Any Applied Focusing Optics
0p* 1 0?

o 35 ﬁV(z)X 1 = Focusing Field from Acceleration
X | Z

*Results can be used to cast acceleration terms in more convenient forms. See
USPAS, Beam Physics with Intense Space-Charge for more details

+RF defocusing in the quasistatic approximation can be analyzed using this
formulation: we will see this in analysis that follows

*Einzel lens focusing exploits accel/de-acel cycle to make AG focusing
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Corrections and suggestions for improvements welcome!

These notes will be corrected and expanded for reference and for use in future

editions of US Particle Accelerator School (USPAS) and Michigan State
University (MSU) courses. Contact:

Prof. Steven M. Lund

Facility for Rare Isotope Beams
Michigan State University

640 South Shaw Lane

East Lansing, MI 48824

lund @frib.msu.edu
(517) 908 — 7291 office
(510) 459 - 4045 mobile

Please provide corrections with respect to the present archived version at:
https://people.nscl.msu.edu/~lund/uspas/ap_2018/

Redistributions of class material welcome. Please do not remove author credits.

SM Lund, USPAS, 2018 Accelerator Physics 27


mailto:lund@frib.msu.edu
https://people.nscl.msu.edu/~lund/uspas/ap_2018/

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 25
	Slide 26
	Slide 27

