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S1: Particle Equations of Motion
S1A: Introduction: The Lorentz Force Equation

The Lorentz force equation of a charged particle is given by (MKS Units):

pi(t) = i [B(xi, 1) + vi(£)<B(xi, )]

m;, q; ....particle mass, charge 1 = particle index
x; (t) .. particle coordinate ¢ = time
p,(t) = m;y;(t)v,(t) .... particle momentum
d —
vi(t) = —Xz(t) = ¢f;(t) ... particle velocity
1 :
(t) = .... particle gamma factor

Total Applied Self
Electric Field:  E(x,1t) E¢(x,t) + E°(x,t)

B%(x,t) + B*(x,t)

Accelerator Physics 2

Magnetic Field:  B(x, t)

SM Lund, USPAS, 2018



S1B: Applied Fields used to Focus, Bend, and Accelerate Beam

Transverse optics for focusing:

Electric Quadrupole Magnetic Quadrupole Solenoid

Coil (Azimuthally Symmetric)

¢ =V, . .
Electrodes Outside of Circle r =r, Conducting Beam Pipe: T T
Electrodes: =% — y? = Tr2 Poles: =y = +72

Dipole Bends:
Magnetic x-direction bend

Electric x-direction bend
Coils

+V -V

Y
Y

)

Ea

~ 7
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Longitudinal Acceleration:
RF Cavity Induction Cell

Pulse Power

Magnetic

\ Acceleration
Gap

We will cover primarily transverse dynamics. Later lectures will cover
acceleration and longitudinal physics:
+ Acceleration influences transverse dynamics — not possible to fully decouple
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S1C: Machine Lattice

Applied field structures are often arraigned in a regular (periodic) lattice for beam
transport/acceleration:

[\ A N -
¥ ¥ -

Focus Accel Focus Accel Focus

Quadrupole  KF Cavity
Solenoid Induction Cell

+ Sometimes functions like bending/focusing are combined into a single element

Example — Linear FODO lattice (symmetric quadrupole doublet)

A
OO

Focus Accel DeFocus Accel Focus

Quadrupole Quadrupole Quadrupole
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Lattices for rings and some beam insertion/extraction sections also incorporate
bends and more complicated periodic structures:

Lattice
Period

Sector .

:i. One Lattice Period
Ring Lattice: 12 Periods Triplet i 4
(SI5-18, GSI) Quadrupoles "

+ Elements to insert beam into and out of ring further complicate lattice
+ Acceleration cells also present

(typically several RF cavities at one or more location)
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S1D: Self fields

Self-fields are generated by the distribution of beam particles:

Charges
Currents
Particle at Rest Particle in Motion
ure electrostatic
(p ) . s
A ES
Obtain from
= = Lorentz boost q V
of rest-frame field:
see Jackson,
y Classical Y
B° =0 Electrodynamics ns

+ Superimpose for all particles in the beam distribution ( q { Vv
+ Accelerating particles also radiate

- We neglect electromagnetic radiation here

- Relevant in parts covering Synchrotron Radiation and FELs
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The electric (E“) and magnetic ( B?) fields satisfy the Maxwell Equations. The
linear structure of the Maxwell equations can be exploited to resolve the field into
Applied and Self-Field components:

E=E" + E°
B =B+ B°
Applied Fields (often quasi-static /0t ~0 ) E® B¢

Generated by elements in lattice

p° 19
VB = V x B® = o 4 = = E°
€0 Ho-t™ ¥ c? Ot
VxE = - g VBT =0
ot
p® = applied charge density L 2
J¢ = applied current density b0 €Q
+ Boundary Conditions on E* and B*

* Boundary conditions depend on the total fields E, B
and 1f separated into Applied and Self-Field components, care can be required
+ System often solved as static boundary value problem and source free in the

vacuum transport region of the beam
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/// Aside: Notation;
R, o 0

V=x—+4+y—+2— - ' ’
o Ty oy + B Cartesian Representation
o 6o .0 .
=r— + —— +2— - Cylindrical Representation
or r 06 0z .. .
x = rcosb r=xXcosf +ysinf
9 y = rsinf §=—%xsinf+ycosb
~ Ix - Abbreviated Representation
— i + ZQ - Resolved Abbreviated Representation
0x 1 0z Resolved into Perpendicular (L)

X = Xt 4 §y + 22 and Parallel(z) components

In integrals, we denote:

/dB.CU--~:/ d:l:'/ dy/ dz---:/deL/ dz ---
/dQZEL“-:/ daz/ dy---:/ drr/ do ---
—oo J—oo 0 - 7
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Self-Fields (dynamic, evolve with beam)
Generated by particle of the beam rather than (applied) sources outside beam

0° 1 0
vV.E° =2 S — 1oJ° + — —E°
€ V xB ,LLOJ + 26tE
. 0, V-B° =0
VX E = _EB 1 = particle index

(N particles)
q; = particle charge

p° = beam charge density

— Z qi0[x — x;(t)] x; = particle coordinate

v,; = particle velocity
J® = beam current density

0(x) = d(x)d(y)o(z)
_ Z ¢ivi(t)d[x — x;(t)] §(x) = Dirac-delta function
. N
Z — sum over
i=1 beam particles

+ Boundary Conditions on E° and B*
from material structures, radiation conditions, etc.
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In accelerators, typically there is ideally a single species of particle:

qi — g Large Simplification!
m; — m Multi-species results in more complex collective effects

Motion of particles within axial slices of the “bunch” are highly directed:
Slice 1 Y :

|

Mean axial velocity of

N’ particles in beam slice

0vi| < |Bplc  Paraxial Approximation

There are typically many particles:

p* = Z qi0|x — x;(t)] J" = Z qivi(t)d[x — x;(t)]

~ p(x, 1) continuous ~ Byep(x, )2 continuous axial
— P charge-density — PoEPX current-density

SM Lund, USPAS, 2018

Accelerator Physics 11



The beam evolution 1s typically sufficiently slow (for heavy 1ons) where we can
neglect radiation and approximate the self-field Maxwell Equations as:
See: Appendix B, Magnetic Self-Fields

s Vast Reduction of
ES = V¢ By self-field model:
B =V xA A= z?gb Approximation equiv to
. electrostatic interactions
Vip = 0.9 b = P in frame moving with
Ox  0x €0 beam: see Appendix B
+ Boundary Conditions on ¢ But still complicated
Resolve the Lorentz force acting on beam particles into
Applied and Self-Field terms: F; =F; +F;
Fi(xit) = qB(xi,1) + qvi(t) x Bxi,t) BT E HE
Applied: B=b"+b

F; = qE + qv; x Bf

a . — a
Self-Field: E®(x;,t) = E} etc.

S
SM Lund, USPAS, 2018
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The self-field force can be simplified:

Plug in self-field forms:

~0 Neglect: Paraxial

F; = qE; 4+ qv; x Bj

f:q[—g—ii—l-(ﬁbci—l—cs i) X (E;ix XZ%(b)

X=X;

J

Resolve into transverse (x and y) and longitudinal (z) components and simplify:

Bycz % (ﬁ X z@qs) =Bz (i X ng)

ox C . ox | ;
. 0. 00 .
_ 32 el
= P2 <8yx Ou )
o9, 09
2 - -
- (axx—I_ayy)i
_ 52 99
baXJ_Z-
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also

¢

_ __ 99
ox

i 8XJ_

(

Together, these results give:

"""""" o | it . B¢ i
Vi Ox 1 0z |,
Transverse  Longitudinal
1
T =T Axial relativistic gamma of beam

+ Transverse and longitudinal forces have different axial gamma factors
* 1/47 factor in transverse force shows the space-charge forces become weaker
as axial beam kinetic energy increases
- Most important in low energy (nonrelativistic) beam transport
- Strong 1n/near injectors before much acceleration

SM Lund, USPAS, 2018 Accelerator Physics 14



/I Aside: Singular Self Fields
In free space, the beam potential generated from the singular charge density:

1S N

47‘(’60 Z |x; — XJ|3/2

Which diverges due to the i = j term. This divergence 1s essentially “erased”
when the continuous charge density 1s applied:

p° = Z giolx —xi(t)] —  p(x,t)

Effectively removes effect of collisions
- Find collisionless Vlasov model of evolution is often adequate

/]
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The particle equations of motion in x; — v; phase-space variables become:

» Separate parts of qE; + qv; x By into transverse and longitudinal comp
Transverse

d
- X1 = V1
g T |
d — e T GG T
g ") = B aPhen X BL B X2 G|,
Applied 5-------S-é-1-;f---------’
Longitudinal
d
— <1 — Uz
dt
: e PR R
g\ "is) = 4Bz~ dWaiBys — vy Be) -4 )
Applied T Soif

In the remainder of this (and most other) lectures, we analyze Transverse
Dynamics. Longitudinal Dynamics will be covered 1n future lectures

+ Except near injector, acceleration is typically slow
e Fractional change inVb, Bb small over characteristic transverse dynamical
scales such as lattice period and betatron oscillation periods
+ Regard Vb, Bb as specified functions given by the “acceleration schedule”

SM Lund, USPAS, 2018 Accelerator Physics 16



S1E: Equations of Motion in s and the Paraxial Approximation

In transverse accelerator dynamics, it is convenient to employ the axial coordinate
(s) of a particle in the accelerator as the independent variable:
+ Need fields at lattice location of particle to integrate equations for particle trajectories

Ay

S=S; +

7

t
/ d v.1(1)
t .

Initial Bcam

Ay

Time t Beam

-
Slice : : Slice ! “
Transform: ‘h ' Neglect
ds . dr;  dsdx; ’ dx; (Byc + 0 )d:vz-
o dt o dt dt ds “ds 7 ds
Denote: N dz;
dJ?Z / - Bbc d
Vgi = —- = Ppex; S
/ — i dt Neglecting term consistent
" ds dy; p with assumption of small
Vi = P ~ Bycy; longitudinal momentum spread

(paraxial approximation)

+ Procedure becomes more complicated when bends present: see S1H

SM Lund, USPAS, 2018
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In the paraxial approximation, x' and y' can be interpreted as the (small
magnitude) angles that the particles make with the longitudinal-axis:

x—angle:%fvvm:x’. . .
Vyi  Bpe U Tylpllcal 5a(c):cel lztuce values:
Vyjs Vyi x'l < mra

y — angle = —£ ~ yz:yg
Vyi  PbC

The angles will be small in the paraxial approximation:

2

2 2 2 12 /2
Vi ’in < @,C — X, , Y; < 1

Since the spread of axial momentum/velocities is small in the paraxial
approximation, a thin axial slice of the beam maps to a thin axial slice and s can
also be thought of as the axial coordinate of the slice in the accelerator lattice

N/
Slice = Uzl
1 =1
‘:-I; | ~ SliCe
- |
) Bye s~ 8 + C/ dt B (t)
ti

SM Lund, USPAS, 2018 Accelerator Physics 18



;
s:si—l—c/ dt By (t)
t.

(4

The coordinate s can alternatively be interpreted as the axial coordinate of a
reference (design) particle moving in the lattice
+ Design particle has no momentum spread

It 1s often desirable to express the particle equations of motion in terms of s rather
than the time ¢

+ Makes it clear where you are in the lattice of the machine

+ Sometimes easier to use t in codes when including many effects to high order

SM Lund, USPAS, 2018 Accelerator Physics 19



Transform transverse particle equations of motion to s rather than t derivatives

i""d """""""""" ’ o 5 1 O¢
(m%uz) ~ qE%; + qBpcz x BY, +iqBLv 1 X 21— q—5 —
ot Vs XL,
Term 1 Term 2
Transform Terms 1 and 2 in the particle equation of motion: d d
- — UZZ_
T i d dx | ; d d dt ds
o MY ) = MW | ViV X
R T R ds \"Fds
, d? d d
— mvzvm@XLz + Mvy,; d X134 d (’szzz)
. Term 1A Term 1B
Approximate:
T 1A 2 d2 52c2 d’ B22x""
d d d d
Term 1B: mMuy; (@Xu) ds (Vivzi) = mByc (@XM) ds (7 8c)

~ m By (18) %1

SM Lund, USPAS, 2018 Accelerator Physics 20



Using the approximations 1A and 1B gives for Term 1:

d dx | ; ) 2 2 [ v (b)),
(2 ~=m C X % —|_ X i
" (7 dt w0 T (wB) T

Similarly we approximate in Term 2:

~ a / -
qB.;v1; X2 >~ qB,Bycx | ; X Z

Using the simplified expressions for Terms 1 and 2 obtain the reduced transverse
equation of motion:

/
X”i—l—(/%ﬁb) X/z': q ai_|_ q ZXBaZ
U (wBe) T mBEeRT T mepBye +
B2, 9,
LB 4 : ¢
m%ﬁbc my; Bic? 0% |,

+ Will be analyzed extensively in lectures that follow in various limits to
better understand solution properties
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S1G: Summary: Transverse Particle Equations of Motion

7 (’Ybﬁb)/ / q a q A a qu / R
e (By) M3y c2 e By Bit mBee T
q 0
a my; B2c? 0x .
E“ = Applied Electric  Field . d Ny = 1
B® = Applied Magnetic Field - ds 1—p;
o 0 P
Vi = ox 6X¢: e
+ Boundary Conditions on ¢

Drop particle i subscripts (in most cases) henceforth to simplify notation
Neglects axial energy spread, bending, and electromagnetic radiation

¥— factors different in applied and self-field terms:
q

mry; Bic? Ox

Yy — Kinematics

In ¢, contributions to v; :

71? — Self-Magnetic Field Corrections (leading order)

SM Lund, USPAS, 2018 Accelerator Physics 22



Write out transverse particle equations of motion in explicit component form:

(78) o

o (’Ybﬂb)

//_|_ (’Ybﬁb), /

q q q
B — B +
myy B ¢ myBee Y mypPpe

q 0¢

B2y

(765) ’

my; B2c? O

q q q
mypByc? Y mypbe C mypfuce
q 0¢

a,./
B x

mfyb Bb c? Oy

SM Lund, USPAS, 2018
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S1H: Preview: Analysis to Come

Much of transverse accelerator physics centers on understanding the evolution of
beam particles in 4-dimensional x-x' and y-y' phase space.

Typically, restricted 2-dimensional phase-space projections in x-x' and/or y-y' are
analyzed to simplify interpretations:

When forces are linear particles tend Nonlinear force components distort
to move on ellipses of constant area orbits and cause undesirable effects
- Ellipse may elongate/shrink and - Growth in effective
rotate as beam evolves in lattice phase-space area reduces
focusability
kl ’ ‘-
X" A Ellipse Twists and Lengthens =
Phase—Space ><'
Ellipse
Const Area
Particle
% -
Ed

SM Lund, USPAS, 2018 Accelerator Physics 24



The “effective” phase-space volume of a distribution of beam particles is of

fundamental interest
Effective area measure in

x-X' phase-space 1s the
x-emittance

Fvorolbororoctoroobroroo oo bonal
0.03—

Statistical 7 Area” ~ we,

e = 4[{x?) 1 (2"?) L — (z2’)1]?

X' [rad]

UV P e e et
0015 0.0 0005 0000 0005 0010 0015

X Iml

We will find in statistical beam descriptions that:

Harder/Easier
S to focus beam
on small final spots

Larger/Smaller beam phase-space areas
(Larger/Smaller emittances)

SM Lund, USPAS, 2018 Accelerator Physics 25



Much of advanced accelerator physics centers on preserving beam quality by
understanding and controlling emittance growth due to nonlinear forces arising
from both space-charge and the applied focusing. In the remainder of the next
few lectures we will review the physics of a single particles moving in linear
applied fields with emphasis on transverse effects. Later, we will generalize
concepts to include forces from space-charge in this formulation and nonlinear
effects from both applied and self-fields.

SM Lund, USPAS, 2018 Accelerator Physics 26



S1I: Bent Coordinate System and Particle Equations of

Motion with Dipole Bends and Axial Momentum Spread

The previous equations of motion can be applied to dipole bends provided the

x,y,z coordinate system is fixed. It can prove more convenient to employ

coordinates that follow the beam in a bend.
* Orthogonal system employed called Frenet-Serret coordinates

Magnetic

T
| Dipolc Bend
: | ; s Circular Path
Reference ____ oo Dtraight Path | ds = Rd0
Trajectory Yy = ds =dz o Tl :
e ®
P =
Applicd Ficld Region | A kS .
a_ o4 | - . Straight Path
B* = Bay | - Nds = dz
. P '\,\.‘ &
o
® = Bend Angle Bend \
& Center TN
R = Bend Radius Reference

s = Reference Trajectory Coordinate Trajectory

SM Lund, USPAS, 2013 Accelerator Physics
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In this perspective, dipoles are adjusted given the design momentum of the
reference particle to bend the orbit through a radius R.
+ Bends usually only in one plane (say x)
- Implemented by a dipole applied field: £ or B;
+ Easy to apply material analogously for y-plane bends, if necessary
Denote:

po = MmYpPpc = design momentum

Then a magnetic x-bend through a radius R 1s specified by:
B® = B,y = const in bend

Analogous formula for

1 qby Electric Bend will be derived
R Do in problem set
The particle rigidity is defined as ( | Bp| read as one symbol called “B-Rho”):
_DPo _ mYpPc
[Bp] = — =
q q
1s often applied to express the bend result as:
1 Bg
R [Bp)

SM Lund, USPAS, 2018 Accelerator Physics 28



Comments on bends:
* R can be positive or negative depending on sign of B, /[ Bp]
* For straight sections, R — oo ( or equivalently, B, = 0)
+ Lattices often made from discrete element dipoles and straight sections with
separated function optics
- Bends can provide “edge focusing”
- Sometimes elements for bending/focusing are combined
* For a ring, dipoles strengths are tuned with particle rigidity/momentum so the
reference orbit makes a closed path lap through the circular machine
- Dipoles adjusted as particles gain energy to maintain closed path
- In a Synchrotron dipoles and focusing elements are adjusted together
to maintain focusing and bending properties as the particles
gain energy. This 1s the origin of the name “Synchrotron.”
+ Total bending strength of a ring in Tesla-meters limits the ultimately
achievable particle energy/momentum in the ring

SM Lund, USPAS, 2018 Accelerator Physics 29



For a magnetic field over a path length S , the beam will be bent through an angle:
S SB:

R~ [By]

To make a ring, the bends must deflect the beam through a total angle of 27 :
+ Neglect any energy gain changing the rigidity over one lap

Z 0, SBa

1,Dipoles

For a symmetric ring, N dipoles are all the same, giving for the bend field:
+ Typically choose parameters for dipole field as high as technology allows for a
compact ring

a [Bp)
B = 27 NG

For a symmetric ring of total circumference C with straight sections of length L

between the bends:
+ Features of straight sections typically dictated by needs of focusing, acceleration, and
dispersion control

C=NS+ NL

SM Lund, USPAS, 2018
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Example: Typical separated function lattice in a Synchrotron

Focus Elements in Red
Bending Elements in Green

Lattice
Period

Sector .

Ring Lattice: 12 Periods
(SIS—-18, GSI)
18 Tesla-Meter

SM Lund, USPAS, 2018

One Lattice Period
(separated function)

Triplet I .

Quadrupoles B?nding e
Dipoles
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For “off-momentum’ errors:

Ps = Do T+ 6]9
po = MYppc = design momentum

Op = off- momentum

This will modify the particle equations of motion, particularly in cases where
there are bends since particles with different momenta will be bent at different
radii

Ps

ﬂ.

® B,y

¢, m
pe=po+dp
Off Momentum (High)

Common notation:

555—]?
Po

—Fractional

Momentum Error

+ Not usual to have acceleration 1n bends
- Dipole bends and quadrupole focusing are sometimes combined

SM Lund, USPAS, 2018 Accelerator Physics 32



Derivatives 1n accelerator Frenet-Serret Coordinates

Summarize results only needed to transform the Maxwell equations, write field

derivatives, etc.
+ Reference: Chao and Tigner, Handbook of Accelerator Physics and Engineering

U(x,y,s) = Scalar
V(z,y,s) =Vi(z,y,s)x+ V,(x,y,s)y + Vs(x,y,5)§ = Vector

Vector Dot and Cross-Products: (V;, V5 Two Vectors)
Vi Vo=V Vor + Vi, Vo + ViV

VixVo=| Vip Vi Vi
Voo Vay Vo
= (VizVas — VigVag )X + (VisVor — VigVas)y + (VisVaoy — ViyVas)s
Elements:
A’z = dzdy

N dZ:ﬁday+ydy+é(1+3)ds
Bz, = (1 + E) dadyds R

SM Lund, USPAS, 2018 Accelerator Physics 33



Gradient:

- T 0w yé?y l+z/R Os
Divergence:
1 0 A% 1 oV,
LV = 1 A’ s
vV 1—|—:U/R3:1:'[( +x/R)V]+8y+1—|—CL’/R 0s
Curl:
. { OV 1 oV, . 1 oV, 0
— _ — 11 g
VXV X(@y 1+z/R 83>+y1+x/R<88 8:6[( +£/R)V]>
. ov, Vg
Laplacian:
1 0 z\ 00|  O*W 1 9 1 oV
29 = I Wl Il
v l+z/ROx [( +R) 8:1:‘]+ 0y? +1—|—$/R08 [1—|—$/R 83]

SM Lund, USPAS, 2018 Accelerator Physics 34



Transverse particle equations of motion including

bends and “off-momentum” effects
+ See texts such as Edwards and Syphers for guidance on derivation steps
+ Full derivation is beyond needs/scope of this class

ZU” 4 (’Vbﬁb)/x/ 4+ [ 1 1 _5] p = 0 1 4+ q Eg
(765) R%(s)1+6 1+ R(s)  mypBc? (14 0)2
. q BZ 4 q B¢ y/ _ q 1 0¢
mYBpcl+6  mySBycl+ 9 m~y; 52c2 146 Ox
/ Lo RBa
y// 4 (’Vbﬁb) y/ _ q — Yy _ 1 q x
(768p) myBic? (1+0)2  mypfpcl+6
_ q By - q 1 09
myyBpc 1 + 6 my; Bac? 1+ 4§ Oy
po = MYpPpc = Design Momentum 1 BZ(S)|Dipole By Do
5 — p _— —
= 22 _ Fractional Momentum Error R(s) 1 Bp] q
Po
Comments:

+ Design bends only in x and BS, Eg contain no dipole terms (design orbit)
- Dipole components set via the design bend radius R(s)

+ Equations contain only low-order terms in momentum spread o

SM Lund, USPAS, 2018 Accelerator Physics 35



Comments continued:

* Equations are often applied linearized in 0

+ Achromatic focusing lattices are often designed using equations with
momentum spread to obtain focal points independent of ) to some order
x and y equations differ significantly due to bends modifying the x-equation
when R(s) 1s finite

+ It will be shown in the problems that for electric bends:

1 Ez(s)
R(s)  Byc[Bp]

+ Applied fields for focusing: E}, BT, By
must be expressed 1n the bent x, y, s system of the reference orbit
- Includes error fields in dipoles
+ Self fields may also need to be solved taking into account bend terms
- Often can be neglected in Poisson's Equation

1 9, (1+£)g+82+ 1 0 1 0 b= _P
1+ x/R 0x R/ Ox oy? 1+xz/R0Os |14+ x/R s €

oo _P

€0

Ox? + Oy? + 052

reduces to familiar:
SM Lund, USPAS, 2018

it R — o0 {82 H2 82}
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Appendix A: Gamma and Beta Factor Conversions

It 1s frequently the case that functions of the relativistic gamma and beta factors
are converted to superficially different appearing forms when analyzing transverse
particle dynamics in order to more cleanly express results. Here we summarize
useful formulas 1n that come up when comparing various forms of equations.
Derivatives are taken wrt the axial coordinate s but also apply wrt time ¢

Results summarized here can be immediately applied in the paraxial

approximation by taking: 5 N Bb
v =|v| >~ v, = Bpe —
T ="
Assume that the beam is forward going with 5 > () :
L 1

[y p=vrl
o 1 2 >
7_1_52 5:1_1/7

A commonly occurring acceleration factor can be expressed in several ways:
+ Depending on choice used, equations can look quite different!

B _o B A
¥8) ~ B B2

SM Lund, USPAS, 2018
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Axial derivative factors can be converted using:

B
LTy

Energy factors:

Eior = YMc® = £ + mc?

o=y () 2 ()

Rigidity:

p ymv  mc
q q q

SM Lund, USPAS, 2018
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Appendix B: Magnetic Self-Fields

The full Maxwell equations for the beam self fields
E°, B°
with electromagnetic effects neglected can be written as
+ Good approx typically for slowly varying ions in weak fields

S_IO 1 0 .
V.-E =L s _ 0 s
€0 VX B = pod + C_23tE
VXES:—;(Z\/BS V-B" =0

+ Boundary Conditions on E® and B*
from material structures, etc.

p = qn(x,1) n(x,t) = Number Density
J =gn(x,t)V(x,t) V(x,t) = "Fluid” Flow Velocity
» Beam terms from charged particles + Calc from continuum approx distribution

making up the beam

SM Lund, USPAS, 2018 Accelerator Physics 39



Electrostatic Approx:

v.E =L
€0

VxE =0

E° = V¢

¢ = Electrostatic

Scalar Potential
— VXE =-V xV¢p=0

Continuity of mixed
partial derivatives

— V.E'=-V.vp=2"

€0

Magnetostatic Approx:

VXBS:/L()J
V-B°=0
B°=V x A

A = Magnetostatic
Vector Potential

— V-B*=V-(VxA)=0

Continuity of mixed
partial derivatives

— VX B’ =V x(VXA)=pgd

+ Boundary Conditions on ¢

SM Lund, USPAS, 2018

Continue next slide
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Magnetostatic Approx Continued:
VxB* =V x(VxA)=pupJ
V(V-A)—=V*A = puoJ

Still free to take (gauge choice):
V:-A =0 Coulomb Gauge

Can always meet this choice:

A — A+ V¢ ¢ = Some Function

0 Cont mixed partial derivatives

— BS:VXA%VXAJer};g:VxA
— V- -A V- -A+V%

Can always choose € such that V - A = 0 to satisfy the Coulomb gauge:

V2A = —ugJ = —pgqnV + Essentially one Poisson form eqn
o for each field x,y,z comp
+ Boundary Conditions on A + Boundary conditions diff than ¢

But can approximate this further for “typical” paraxial beams .....
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VA = —ppd = —pognV

Expect for a beam with primarily forward (paraxial) directed motion:

V., = Bye Viy ~ R Byc R’ = Beam Envelope Angle
(Typically 10s mrad Magnitude)

— ‘Aw,y‘ < ’Az‘

Giving
V24, = —pogByen 1= =2V ecuostati pa
V2Az — (NOGO)CﬁbV2¢ Uo€o = C% From unit definition
V2A, = 5 Avals
—> A, = @

+ Allows simply taking into account low-order self-magnetic field effects

- Care must be taken if magnetic materials are present close to beam
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Further insight can be obtained on the nature of the approximations in the reduced
form of the self-magnetic field correction by examining
Lorentz Transformation properties of the potentials.

From EM theory, the potentials ¢, ¢A  form a relativistic 4-vector that
transforms as a Lorentz vector for covariance:

A,LL — (¢, CA)

In the rest frame (*) of the beam, assume that the flows are small enough where
the potentials are purely electrostatic with:

Ar = (¢7,0) V2t = 1
€0
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Review: Under Lorentz transform, the 4-vector components of A, = (¢, cA)
transform as the familiar 4-vector z,, = (ct,x)

X1 L.ab Frame

&

Transform

ct® =yy(ct — Pp2)
2" =y (2 — Bpct)
x* =x

This gives for the 4-potential A, =

0
¢ = (0" +05b0/4/£) =

Xj- Beam (*) Frame
— OpC
S

Inverse Transform
ct =y (ct™ + Bpz™)
2z =Y (2" + Bpct™)
X =X

(¢,cA) :

Yo

cA, = %((7*/5+ Brd™) = Bo(10") = Bpd

_ D
—C

—| A,

SM Lund, USPAS, 2018

+ Shows result 1s consistent with pure
electrostatic in beam (*) frame
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S2: Transverse Particle Equations of Motion in
Linear Applied Focusing Channels
S2A: Introduction

Write out transverse particle equations of motion in explicit component form:

7 (Vbﬁb)/ / q a q a q a. !
N (768p) v myyBf 2 P m’YbﬁbCBy " m’YbﬁbCBzy
. q 09
mry; B2c? Ox
7 (Vbﬁb), / q a q a q a ./
" (765) 7T my BF ¢ By + m%BbCBx - m%ﬁchzx
qg 0¢
mfyb 5 52c2 Oy

Equations previously derived under assumptions:

+ No bends (fixed x-y-z coordinate system with no local bends)

* Paraxial equations ( z'?,y% < 1)

+ No dispersive effects (5, same all particles), acceleration allowed ( 3, # const )

+ Electrostatic and leading-order (in (3 ) self-magnetic interactions
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The applied focusing fields
Electric: By, F,
Magnetic: B?, Bg, B

must be specified as a function of s and the transverse particle coordinates x and y
to complete the description
+ Consistent change in axial velocity ( Syc ) due to E must be evaluated
- Typically due to RF cavities and/or induction cells
+ Restrict analysis to fields from applied focusing structures
Intense beam accelerators and transport lattices are designed to optimize
linear applied focusing forces with terms:

Electric: FE2 ~ (function of s) x (x or y)

E; ~ (function of s) x (z or y)

Magnetic: Bj; ~ (function of s) x (x or y)
B ~ (function of s) x (z or y)

B? ~ (function of s)
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Common situations that realize these linear applied focusing forms will be
overviewed:
Continuous Focusing (see: S2B)
Quadrupole Focusing
- Electric  (see: S20)
- Magnetic (see: S2D)
Solenoidal Focusing (see: S2E)

Other situations that will not be covered (typically more nonlinear optics):
Einzel Lens
Plasma Lens
Wire guiding

Why design around linear applied fields ?
+ Linear oscillators have well understood physics allowing formalism to be
developed that can guide design
+ Linear fields are “lower order” so it should be possible for a given source
amplitude to generate field terms with greater strength than for “higher
order” nonlinear fields
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S2B: Continuous Focusing

Assume constant electric field applied focusing force:

B =0
meﬁgCngo
Ejl_:ng(—l—E;Sf:— X |
q

k%o = const > 0

rad
kgo] =

m

Continuous focusing equations of motion:

Insert field components into linear applied field equations and collect terms

/ a¢
<! & (7655) < k2 x, — q
+ (V58p) + B0 m”Yb 51) c? 0x |
7 (fyb/Bb)/ / 2 L q agb
. (7680) T Kor = m'yb ﬁb c2 0x Equivalent
Component
v, (b)) o q 0P
k
+ (v5s) Yy + Kgoy m”yb /Bb 2 oy Form

Even this simple model can become complicated

» Space charge: ¢ must be calculated consistent with beam evolution

+ Acceleration: acts to damp orbits (see: S10)
SM Lund, USPAS, 2018
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Simple model in limit of no acceleration ( Y5y =~ const ) and
negligible space-charge ( ¢ ~ const ):

General solution is elementary:

x| + k%ox 1 =0 —> orbits simple harmonic oscillatons

x1 = X1 (8;)cos[kgo(s — s3)] + [x'L(5:)/kpo] sinlkgo (s — si)]
x| = —kgox (s;)sin[kgo(s — s;)] + x| (s:) cos[kgo(s — ;)]
x| (s;) = Initial coordinate

x'| (s;) = Initial angle

In terms of a transfer map in the x-plane (y-plane analogous):

o] =t [ 2]

cos|kgo(s — s;)] % sin|kgo(s — s;)]
—kgo sinlkgo(s — si)] cos|kgo(s — s;)]

7

M. (s[si) = [

SM Lund, USPAS, 2013 Accelerator Physics
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/// Example: Particle Orbits in Continuous Focusing
Particle phase-space in x-x' with only applied field

kgo = 2m rad/m z(0) =1 mm y(0) =0
d~0 By =const z'(0)=0 y'(0) =0
1.0
2 osf
g 00}
? —0.5;—
-1.0F . . . . | . . . . | . . . . | . . . . 3
0.0 0.5 1.0 15 2.0
S [m]
5 s |
o i
- i
I e i
~ s AN
0.0 05 1.0 15 2.0
s Iml

+ Orbits in the applied field are just simple harmonic oscillators

SM Lund, USPAS, 2013 Accelerator Physics
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Problem with continuous focusing model:

The continuous focusing model is realized by a stationary (1m — oo ) partially
neutralizing uniform background of charges filling the beam pipe. To see this
apply Maxwell's equations to the applied field to calculate an applied charge
density:

O 2meop B2 k2
p' =€ E" = — O 50 — const

0x q

+ Unphysical model, but commonly employed since it represents the average
action of more physical focusing fields in a simpler to analyze model
- Demonstrate later in simple examples and problems given
+ Continuous focusing can pr0V1de reasonably good estimates for more realistic
periodic focusing models if k? 30 1s appropriately identified in terms of
“equivalent” parameters and the periodic system is stable.
- See lectures that follow and homework problems for examples

SM Lund, USPAS, 2018 Accelerator Physics S1



In more realistic models, one requires that quasi-static focusing fields in the
machine aperture satisfy the vacuum Maxwell equations

V-E*=0 V- -B*=0
V x E*=0 V x B =0

+ Require in the region of the beam
+ Applied field sources outside of the beam region

The vacuum Maxwell equations constrain the 3D form of applied fields resulting
from spatially localized lenses. The following cases are commonly exploited to
optimize linear focusing strength in physically realizable systems while keeping
the model relatively simple:
1) Alternating Gradient Quadrupoles with transverse orientation
- Electric  Quadrupoles (see: S2C)
- Magnetic Quadrupoles (see: S2D)
2) Solenoidal Magnetic Fields with longitudinal orientation (see: S2E)
3) Einzel Lenses
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S2C: Alternating Gradient Quadrupole Focusing
Electric Quadrupoles

In the axial center of a long electric quadrupole, model the fields as 2D transverse

2D Transverse Fields

B® =0
E, = -Gz
E, = Gy
GEQ:—({?E; — oLy
rs ox oy
= Electric Gradient
p——a V, = Pole Voltage
Electrodes Outside of Circle r = 7, . )
Electrodes: z* — y* = Fr2 rp = Pipe Radius
* Electrodes hyperbolic (clear aperture)

+ Structure infinitely extruded along z
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/[Aside: How can you calculate these fields?

Fields satisfy within vacuum aperture:

V- -E* =0 . Ee — _vge
VxE*=0

Choose a long axial structure with 2D hyperbolic potential surfaces:

¢* = const(z? — y?)

Require: ¢ =V, at x=r,,y=0 = const = Vq/rz

. WV
¢ = £ (x* —y?)
Tp
“ -2
E¢ = _9¢ Yo, — ~Gx
ox 7“129 oV,
= 90" 2V G="3
ECL = — p— —q e Gy p
Y oy rg

Realistic geometries can be considerably more complicated
*+ Truncated hyperbolic electrodes transversely, truncated structure in z

SM Lund, USPAS, 2013 Accelerator Physics



Quadrupoles actually have finite axial length in z. Model this by taking the
gradient G to vary in s, 1.e., G = G(S) with 8 = 2 — Zcenter (straight section)
+ Variation is called the fringe-field of the focusing element
+ Variation will violate the Maxwell Equations in 3D
- Provides a reasonable first approximation in many applications
+ Usually quadrupole 1s long, and G(s) will have a flat central region and rapid
variation near the ends
A Ges)
Accurate fringe calculation
typically requires higher
level modeling:
3D analysis
Detailed geometry

Typically employ magnetic
design codes

-
5

Axial Extent
Quadrupole
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For many applications the actual quadrupole fringe function G(s) 1s replaced by a
simpler function to allow more idealized modeling
+ Replacements should be made in an “equivalent” parameter sense to be
detailed later (see: lectures on Transverse Centroid and Envelope Modeling)
+ Fringe functions often replaced in design studies by piecewise constant G(s)
- Commonly called “hard-edge” approximation
+ See S3 and Lund and Bukh, PRSTAB 7 924801 (2004), Appendix C for more

details on equivalent models

A G(s)

Replace Gradient
y

Piecewise

Continuous

i

Axial Extent
Quadrupole

SM Lund, USPAS, 2018

A G(s)

LA
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Electric quadrupole equations of motion:
+ Insert applied field components into linear applied field equations and collect

terms
/ a¢
x//+(7b6b) 2+ k(s = — q
(V55p) (5) my, By c? 0z
/ 8¢
n (/Vbﬁb) ! e(s)y — q
/ (V558) 7/ (8)y - mypB2e? Oy
(s) = o G
myfrc®  Brc|Bp)
oo OBy 0By 2V g DO p ity
ox oy re q
Byc|Bp| = Electric Rigidity

+ For positive/negative K , the applied forces are Focusing/deFocusing in
the x- and y-planes

+ The x- and y-equations are decoupled

+ Valid whether the the focusing function k is piecewise constant or

incorporates a fringe model
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Simple model 1n limi

t of no acceleration ( v, 3, ~ const ) and

negligible space-charge (¢ ~ const ) and x = const:

2+ rkr=0

y' — Ky =0

—> orbits harmonic or hyperbolic
depending on sign of k

General solution:

k>0 :

/
T = —\/KZ;

y' = VKy; si

k<0 :

v = cos|v/R(s — 5)] + (2/v/) sin[v/R(s — ;)

sin[v/k(s — s;)] + x; cos[v/k(s — s;)]
x(s;) = x; = Initial coordinate
2’ (s;) = x; = Initial angle

y = y; cosh[v/k(s — s;)] + (y;/v/k) sinh[v/k(s — 5;)]

nh[v/k(s — s;)] + 9, cosh[\/k(s — ;)]
y(s;) = y; = Initial coordinate
y'(s;) = y; = Initial angle

Exchange z and y in £ > 0 case.

SM Lund, USPAS, 2018
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In terms of a transfer maps:

k>0 :

X

1
SRS
| — |

(V)
|

1
SN
| I |
»

|

- cos[v/k(s — si)]

M (s]si) = - —Vksin[\/E(s — ;)]
| coshly/k(s — si)]
My(S‘Sz) — _ VK sinh[v/k(s — ;)]
k<0 :

Exchange x and y in K > 0 case.

sl sl
)

cos[\/k(s — s;

ﬁ sinh[y/k(s
cosh|\/k(s — s;

b ]

SM Lund, USPAS, 2018
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Quadrupoles must be arranged 1n a lattice where the particles traverse a sequence
of optics with alternating gradient to focus strongly in both transverse directions
+ Alternating gradient necessary to provide focusing in both x- and y-planes
+ Alternating Gradient Focusing often abbreviated “AG” and 1s sometimes

called “Strong Focusing”
+ FODO is acronym:
- F (Focus) in plane placed where excursions (on average) are small
- D (deFocus) placed where excursions (on average) are large
- O (dnift) allows axial separation between elements
+ Focusing lattices often (but not necessarily) periodic
- Periodic expected to give optimal efficiency in focusing with
quadrupoles
+ Drifts between F and D quadrupoles allow space for:
acceleration cells, beam diagnostics, vacuum pumping, ....
+ Focusing strength must be limited for stability (see S5)
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Example Quadrupole FODO periodic lattices with piecewise constant K
+ FODO: [Focus drift(O) DeFocus Drift(O)] has equal length drifts and same
length F and D quadrupoles
+ FODO is simplest possible realization of “alternating gradient” focusing
- Can also have thin lens limit of finite axial length magnets in FODO lattice

H;J?(S) i i (H‘T :__j_f_{’_y)_ __________________ i R -
d { d
F Quad |- F;L-I -—i--l -
| , ' ' . -
. D Quad i 5
o ;
S A Y -
- Ly - d = (1—1n)Ly/2
| Lattice Period |

n = Occupancy € (0, 1]
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//l Example: Particle Orbits in a FODO Periodic Quadrupole Focusing Lattice:
Particle phase-space in x-x' with only hard-edge applied field
Ly =05m g =450rad/m? in Quads z(0) =1mm y(0) =
n=0.5 ¢~0 YOy = const z'(0) =0 y'(0) =0

r (scaled + s_hlfted)

B — D —— _ _—— — R

0 1 2 3 4 5

—-10F — o — —

[ — p—— - _

SE K (scaled + shifted)

2 3 4 5
s/ L, |Lattice Periods] /Il
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Comments on Orbits:
* Orbits strongly deviate from simple harmonic form due to AG focusing
- Multiple harmonics present

+ Orbit tends to be farther from axis in focusing quadrupoles and
closer to axis in defocusing quadrupoles to provide net focusing

+ Will find later that if the focusing 1s sufficiently strong, the orbit can
become unstable (see: S5)

+ y-orbit has the same properties as x-orbit due to the periodic structure and AG
focusing

*If quadrupoles are rotated about their z-axis of symmetry, then the
x- and y-equations become cross-coupled. This 1s called quadrupole
skew coupling (see: Appendix A) and complicates the dynamics.

Some properties of particle orbits in quadrupoles with x = const
will be analyzed in the problem sets
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S2D: Alternating Gradient Quadrupole Focusing
Magnetic Quadrupoles

In the axial center of a long magnetic quadrupole, model fields as 2D transverse

2D Transverse Fields
a’ —_—
1=
By = Gy
a __
B, = Gx
€T Bg — 0
G = By = OB, = OBy
Tp Oy Ox
, _ = Magnetic Gradient
Conducting Beam Pipe: r — 1,
Poles: ay = £33 B, = |B%|,=,, = Pole Field

+ Magnetic (ideal iron) poles hyperbolic

+ Structure infinitely extruded along z
SM Lund, USPAS, 2018

r, = Pipe Radius
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/[Aside: How can you calculate these fields?
Fields satisfy within vacuum aperture:

V-B*=0

B? =
VxBY=0

—

—Vo°

Analogous to electric case, BUT magnetic force 1s different so rotate potential

surfaces by 45 degrees:

Electric

0p°

0x 1

¢* = const(z? — y?)

FJ_:—q

SM Lund, USPAS, 2018

F,

Magnetic
0
qBpCz X i
(9X 1

expect electric potential form
rotated by 45 degrees ...

1 1
r——x — ——
Va2’
— : + 1
_x —_—
¢ — ¢% = —const - xy

Accelerator Physics



B = ——— = const-
T . Y
— a
a 0
By = ——— =const-x
Yy
Require: |BY| =B, at r=+/22+y?=r, —> const = B, /7,
a Bp G — &
— 0% = ——=xy Tp
T'p

Realistic geometries can be considerably more complicated
+ Truncated hyperbolic poles, truncated structure in z
+ Both effects give nonlinear focusing terms

SM Lund, USPAS, 2013 Accelerator Physics
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Analogously to the electric quadrupole case, take G = G(s)
+ Same comments made on electric quadrupole fringe in S2C are directly
applicable to magnetic quadrupoles

Magnetic quadrupole equations of motion:
+ Insert field components into linear applied field equations and collect terms

(%51)) q 09
(%51)) 7+ (o) Bt Ox
L (wb)" B q 09
(%519) v = o)y = - mBEc2 Oy
K(s) = 4G G
mypOpc By
G — 0Bz — % _ By |Bp| = Yo Obme = Rigidity
Oy Ox p q

» Equations identical to the electric quadrupole case in terms of ()

+ All comments made on electric quadrupole focusing lattice are immediately
applicable to magnetic quadruples: just apply different £ definitions in design

+ Scaling of K with energy different than electric case impacts applicability
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Q . . . o GEZ 2V,

Brcl Bl Electric Focusing; G = 5y = 72

" G Magnetic Focusine: G = 0B, _ By
[Bp] S & oy Tp

* Electric focusing weaker for higher particle energy (larger [5p)
+ Technical limit values of gradients

- Voltage holding for electric

- Material properties (iron saturation, superconductor limits, ...) for magnetic
+ See JJB Intro lectures for discussion on focusing technology choices

Different energy dependence also gives different dispersive properties when beam
has axial momentum_spread:

= P _ Fractional Momentum Error
Po

. (HL&)Q Electric Focusing
K

p : .
T Magnetic Focusing

+ Electric case further complicated because 0 couples to the transverse motion since

particles crossing higher electrostatic potentials are accelerated/deaccelerated
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S2E: Solenoidal Focusing

The field of an 1deal magnetic solenoid 1s invariant under transverse rotations
about it's axis of symmetry (z) can be expanded in terms of the on-axis field as as:

Coil (Azimuthally Symmetric)

(@ o o s o o s ool Vacuum Maxwell equations:
//]3a V . Ba — O
7 - V xB% =0
//’—\*\ ~

Imply B® can be expressed in

\\ terms of on-axis field B¢(r = 0, 2)

a __ See
B = Appendix D
1SN (=1 077 1B,4(2) (\XL\)”Q or
a .
1L =5 Z — ov—_1 X1 Reiser,
2 v=1 V!(V 1)! 0z 2 Theory and Design
2 2v of Charged
B? = B.o(z) + Z Y BZO( ) ‘XJ-‘ Particle Beams,
: — V' 0z2¥ 2 Sec. 3.3.1
B.o(z) = By (x1 =0, 2) = On-Axis Field
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Writing out explicitly the terms of this expansion:

BY(r,z) =tB(r,z) + zB2(r, 2) r=/x2 + y?
= (—%xsinf + ycos0) By (r, z) + 2By (r, 2)
where oo v -
Ba B(Zy—l) (f)
(r;2) ; vi(v — 1 20 (2) 2
3 5 7 9
__Bu) | BRG) s BRI 5 BY() 2 BOG) o
2 i 16 384 18432 1474560
— (=1)" L), \ (T\Z
-5 G0 ()
z(T Z) 1;) (I/!)Q z0 (Z) 2
""""""""" B/y(z) 5 BW() , BY(:) , BY )
Bz 20 2 20 \~) 4 20 \~7)_6 —20 \~7J 8
Beola) i T T T 500 " T aase
B.o(z) = B2(r =0, z) = On-axis Field _ Linear Terms
anB O(Z> aBZO( ) 823 O(Z)
B(n) — z B’ 1" — 2z
z0 ( ) Han ZO( ) Oz Bz()(Z) = 822
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For modeling, we truncate the expansion using only leading-order terms to obtain:
+ Corresponds to linear dynamics in the equations of motion

1 0B,¢(z
2 0z
BY = _16320(Z)y B.o(z) = By(x, =0, 2)
o2 0z — On-Axis Field
Bz — BZO(Z)
Note that this truncated expansion 1s divergence free:
10B,y 0O 0
V-B%=—— : —DB,g =0
2 0z 0x XL+ 9z 2
but not curl free within the vacuum aperture:
a 1 82BZ0(Z) ~ "
V xB 25 822 (—Xy—l—yZE)
10%B, 10%B, -
=3 azg(z)r(—fc sinf + y cos ) = 5 azg(z) 6

+ Nonlinear terms needed to satisty 3D Maxwell equations
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Solenoid equations of motion:
*+ Insert field components into equations of motion and collect terms

v, (b)), Bly(s)  Bwols) , g 09
v YT oB Y T B Y T maBR2R o
(7655) | Bp) [ Bp) my, By e 0
Bs)’ 20(8) | Baols) g 09
" (’Yb Iy 2z T+ o =
T By T 2B By mys B3 Dy
|Bp| = Yo/yme — Rigidity Bzo(s) = We(s)
q | Bp] Yo OpC
B,
we(s) = 4B=0(5) = Cyclotron Frequency
m (in applied axial magnetic field)

+ Equations are linearly cross-coupled in the applied field terms
- x equation depends on y, y'
- y equation depends on x, x'

SM Lund, USPAS, 2013 Accelerator Physics



It can be shown (see: Appendix B) that the linear cross-coupling in the applied
field can be removed by an s-varying transformation to a rotating
“Larmor” frame:

~. used to denote
rotating frame variables

SM Lund, USPAS, 2018

B

T= xcosy(s)+ysini(s)
j = —xsiny(s) +ycos(s)
os) = [ dsku(3

iy (s) = B.o(s) _ we(s)

= Larmor
wave number

s = s; defines
initial condition
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If the beam space-charge 1s axisymmetric:
do  O¢ Or  Opxy
ox, Ordx, Or r

then the space-charge term also decouples under the Larmor transformation and
the equations of motion can be expressed in fully uncoupled form:

, _
4 (’Ybﬁb) 74 /43(8)5(5 _ q _ (9¢CC
(75) m% By pC” Or T Will demonstrate
v (768)’ 7+ k(s)j = q 09 Yy Y this in problems
(V58p) - mR B2 Or v for the simple
case of:

f(s) = k2 (s) = Bf;(;)r B [;;Z)Cr

+ Because Larmor frame equations are in the same form as continuous and
quadrupole focusing with a different ~, for solenoidal focusing we implicitly
work in the Larmor frame and simplify notation by dropping the tildes:

B.o(s) = const

X| — X
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/// Aside: Notation;

A common theme of this class will be to introduce new effects and generalizations
while keeping formulations looking as similar as possible to the the most simple
representations given. When doing so, we will often use “tildes” to denote
transformed variables to stress that the new coordinates have, in fact, a more
complicated form that must be interpreted in the context of the analysis being
carried out. Some examples:

+ Larmor frame transformations for Solenoidal focusing

See: Appendix B
+ Normalized variables for analysis of accelerating systems
See: S10

/1]
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Solenoid periodic lattices can be formed similarly to the quadrupole case
+ Drifts placed between solenoids of finite axial length
- Allows space for diagnostics, pumping, acceleration cells, etc.
+ Analogous equivalence cases to quadrupole
- Piecewise constant K often used
+ Fringe can be more important for solenoids

Simple hard-edge solenoid lattice with piecewise constant <

A '

Ra(s)] | (K2 = Ky) e
S e -
| : | . ’
d/2 T 6 Td/2 i d2 d=(1—n)kL,
;_. Lp --; t= ULP
| Lattice Period |

n = Occupancy € (0, 1]
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/// Example: Larmor Frame Particle Orbits in a Periodic Solenoidal Focusing
Lattice: T — T’ phase-space for hard edge elements and applied fields

L,=0.5m
n=20.9

k = 20 rad/m? in Solenoids Z(0) =1 mm
¢ ~0 "By = const

Eay)

=0

3(0) = 0
7(0)=0

05
B . k (scaled + shifted)
0 —1.5 . —
2.0 . — ——t
0 1 2 3 4 5
s/ L, |Lattice Periods|
4k T — A
=  2f
CG 0- . = = 3 - - - - == - = — — 7
= 2} ,
! k (scaled + shifted) g
= 0 ]
5 1 2 3 4 5

s/ L, |Lattice Periods|

SM Lund, USPAS, 2018

Accelerator Physics

77



Contrast of Larmor-Frame and Lab-Frame Orbits
+ Same 1nitial condition

Larmor-Frame Coordinate Orbit in transformed x-plane only

x (scaled + shifted)

1

2 3
s/ L, |Lattice Periods|

Lab-Frame Coordinate Orbit in both x- and y-planes

1.0
05
00¢
-0.5¢
—-1.0F
-1.5E
20—

2 [

# (scaled + shilted)

1 2 3 4
s/ L, |Lattice Periods]

U [HHH]

—1.0f
_15¢E
20f

r (scaled | shifted)

T 2 T3 T Ta s

s/ L, [Lattice Periods]

4 A vevwuwilivialtuvl L 11)’ [OJ § V76

4 5

Calculate
using
transfer
matrices in
Appendix C
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Contrast of Larmor-Frame and Lab-Frame Orbits

+ Same initial condition
Larmor-Frame Angle

4; 'l‘ll""llll;ll
< 2f
SO';
= 2
|—_4§
By O
_8‘

T
e Calculate
g === using
s/ L, |Lattice Periods| transfer
af ' ' : matrices in
2¢ \ : .
T Ry e e Appendix C
= 4 - v (scaled + shifted) _
= 6} " —
S0 1 2 3 a4 s

s/ L, |Lattice Periods]
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Additional perspectives of particle orbit in solenoid transport channel
+ Same 1nitial condition
Radius evolution  (Lab or Larmor Frame: radius same)

1.0: r
— 05¢
§ 00f--------Moo-_ e P L EET T
;& o5F - r (scaled 4 shifted)
?--_1.05:7 Q ——E
o 1 2 3 4 5

s/ L, |Latticc Periods]
Side- (2 view points) and End-View Projections of 3D [Lab-Frame Orbit

{;\%
N o]
v )
_ {M \ — /\ — Calculate
%‘ . W \\\ o _ using
v j | | transfer
° : Peroid 4 g i - matrices iIl
| e o | Appendix C
= 17&'1‘!:“"\ \ et
E 0 - -15 L L L L
T ; _M \ 2 =
: 5 : x[mm]

Peroicd
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Larmor angle and angular momentum
of particle orbit in solenoid transport channel

+ Same 1nitial condition s B.o(s)
_ _ z
Larmor Angle (s) = —/ ds kr,(5) kr(s) = 2[B))]
Si
0 HLarmor Angle
?_100 _ T —
= —
i 3  (scaled | shilted) \__
;—400;— —_— e —_—
0 1 2 3 4 5

s/ L, [Lattice Periods|
Angular Momentum and Canonical Angular Momentum (see Sec. S2G )

5 y_JT —
§0 /— \ /‘
| | N =
E _10 _ B ("Llf‘d + shifted) _
B Tz 3 4 s

s/ L, [Lattice Periods] /]
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Comments on Orbits:
* See Appendix C for details on calculation
- Discontinuous fringe of hard-edge model must be treated carefully if
integrating in the laboratory-frame.
* Larmor-frame orbits strongly deviate from simple harmonic form due to
periodic focusing
- Multiple harmonics present
- Less complicated than quadrupole AG focusing case when interpreted
in the Larmor frame due to the optic being focusing in both planes
* Orbits transformed back into the Laboratory frame using Larmor
transform (see: Appendix B and Appendix C)
- Laboratory frame orbit exhibits more complicated x-y plane coupled
oscillatory structure
+ Will find later that if the focusing is sufficiently strong, the orbit can
become unstable (see: S5)
+ Larmor frame y-orbits have same properties as the x-orbits due to the equations
being decoupled and 1dentical in form in each plane
- In example, Larmor y-orbit is zero due to simple initial condition in x-plane
- Lab y-orbit is nozero due to x-y coupling
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Comments on Orbits (continued):
+ Larmor angle advances continuously even for hard-edge focusing
+ Mechanical angular momentum jumps discontinuously going into and out of the
solenoid
- Particle spins up and down going into and out of the solenoid
- No mechanical angular momentum outside of solenoid due to the
choice of intial condition in this example (initial x-plane motion)
* Canonical angular momentum F is conserved in the 3D orbit evolution
- As expected from analysis in S2G
- Invariance provides a good check on dynamics
- Py in example has zero value due to the specific (x-plane)
choice of initial condition. Other choices can give nonzero values
and finite mechanical angular momentum in drifts.

Some properties of particle orbits in solenoids with piecewise k = const
will be analyzed 1n the problem sets

/]
SM Lund, USPAS, 2018 Accelerator Physics 83



S2F: Summary of Transverse Particle Equations of Motion

In linear applied focusing channels, without momentum spread or radiation, the
particle equations of motion in both the x- and y-planes expressed as:

1" (Vbﬁb)/ / . q 0
" (Bs) T ra(8)e = - mApBRc? Ox
7 (Vbﬁb), / . q 0
" (7608p) F (sl - my R Oy

k. (s) = x-focusing function of lattice

Kky(s) = y-focusing function of lattice

Common focusing functions:

Continuous: o (s) _ /{y( 3) _ k%o — const

Quadrupole (Electric or Magnetic):
a(s) = —#iy () = A(s)
Solenoidal (equations must be interpreted in Larmor Frame: see Appendix B):

a(s) = riy(s) = Ai(s)
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Although the equations have the same form, the couplings to the fields are
different which leads to different regimes of applicability for the various focusing
technologies with their associated technology limits:
Focusing:
Continuous:
Kz(S) = ky(s) = k%() = const
Good qualitative guide (see later material/lecture)
BUT not physically realizable (see S2B)

Quadrupole:
G(s) Electric Bol = mypPec
C ) P —

) = = { B e =
B agnetic

G is the field gradient which for linear applied fields is:

4 a
OE% oOF 2V i
— 5 =54 =5 Hlectric
G(S) < €T y Tp
ﬁBg . 8BZ __ B, £
oy T Oz T Magne 1C

Solenoid:

=t =i =[] ~[5] w22
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It 1s instructive to review the structure of solutions of the transverse particle
equations of motion in the absence of:

8¢  O¢
Space-charge: — ~ — ~
o (15s)
Acceleration: Y8y =~ const — WVesb) ~ ()
(70p)

In this simple limit, the x and y-equations are of the same Hill's Equation form:

" 4+ Kkp(s)zr =0
y"' + ky(s)y =0

+ These equations are central to transverse dynamics in conventional

accelerator physics (weak space-charge and acceleration)
- Will study how solutions change with space-charge in later lectures

In many cases beam transport lattices are designed where the applied focusing
functions are periodic:

Kz (s + Lp) = Ka(s)
kiy(s + Lp) = ky(s)
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Common, simple examples of periodic lattices:

i Periodic Solenoid

wa(s)[ | (e = k) h o .
— - -
| | | | | 5
! ! : —— | -
d/2 € d/2id2n d=(1-nlk,
A iPeﬂodic FODO Quadrupole t=nly
Kl S) (Ko = —ky) .
e _____ _ ,"{; _———  _______ —
d ¢ d
F Quad [ .H.__..
| | ' -
. D Quad : 5
A :
S SEN—
- L - — {1 _
! F | d = (1 W)L'p/g
i Lattice Period | 0 — ﬁLp/Q
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However, the focusing functions need not be periodic:

+ Often take periodic or continuous in this class for simplicity of interpretation
Focusing functions can vary strongly in many common situations:

+ Matching and transition sections

+ Strong acceleration

+ Significantly different elements can occur within periods of lattices in rings

- “Panofsky” type (wide aperture along one plane) quadrupoles for beam
insertion and extraction in a ring

Example of Non-Periodic Focusing Functions: Beam Matching Section
Maintains alternating-gradient structure but not quasi-periodic

Matching Section x—Focusing Strength

1.0F :
0.8
; Example corresponds to

@ 0.6f : :
= : High Current Experiment
S o04f : .
2 ool Matching Section
E; 0.0f (hard edge equivalent)

at LBNL (2002)

_0.2}

—0.4F

0 50. 100. 150. 200. 250. 300. 350.
s [em]
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Equations presented in this section apply to a single particle moving in a beam
under the action of linear applied focusing forces. In the remaining sections, we
will (mostly) neglect space-charge (¢ — 0 ) as 1s conventional in the standard
theory of low-intensity accelerators.
+ What we learn from treatment will later aid analysis of space-charge effects
- Appropriate variable substitutions will be made to apply results
+ Important to understand basic applied field dynamics since space-charge
complicates
- Results in plasma-like collective response

/l/ Example: We will see in Transverse Centroid and Envelope Descriptions of
Beam Evolution that the linear particle equations of motion can be applied to
analyze the evolution of a beam when image charges are neglected

r— x.=(x); x — centroid

y — Y. = (y)1 y — centroid P
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Appendix A: Quadrupole Skew Coupling

Consider a quadrupole actively rotated through an angle %’ about the z-axis:

y A

" Transforms
N T = xcosy +ysiny
(Rotated Position) ?j — _rdin w + Y COS ¢
) , . - .
Vo e, = Toosy—gsing
: Yy = XIsIiny + ycosy
Normal Orientation Fields
Electric Magnetic
EY = -Gz B, =Gy
E; = Gy B} =Gz
G = G(s)
= Field Gradient (Electric or Magnetic)
Note: units of G different in electric and magnetic cases Al
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Rotated Fields
Electric

By = Ezcosy — Egsing  Ef=-GI=—-G( xcosy + ysiny)
E} = Eisiny + Efcosy Ej= Gy= G(—xsinyg+ycosy)

Combine equations, collect terms, and apply trigonometric identities to obtain:

E¢ = —Gcos(2¢)x — Gsin(2¢)y 2s8in ¢ cos ¢ = sin(2¢)
B, =-G sin(2y)x + G cos(2v)y cos? 1) — sin® 1) = cos(2¢)
Magnetic

By = Bzcosy — BgsinYy B =Gy = G(—xsiny + ycos)
By = B¢siny + Bjcosy Bj=Gi=G( xzcosy +ysiny)

Combine equations, collect terms, and apply trigonometric identities to obtain:

BS = —Gsin(2y)x + G cos(2¢)y
By = Gcos(2¢)r + Gsin(29)y

A2
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For both electric and magnetic focusing quadrupoles, these field component
projections can be inserted in the linear field Eqns of motion to obtain:

Skew Coupled Quadrupole Equations of Motion

7, (/Vbﬁb), / : — 4 99
x + (6 5) x4 kcos(29)z + K sin(2¢)y m% 3322 Oz
7 (Vbﬁb)/ / | : — d (9¢
Yy | (/)/bﬁb) y — KCOS(Zw)y RSln(Zw)x mf}/b /Bb CZ ay

Buc[Bp]?
G

{ G Electric Focusing
K =
[Bp]”

Magnetic Focusing

System 1s skew coupled:
* x-equation depends on y, y" and y-equation on X, X' for ) £ nsr /2 (n integer)
Skew-coupling considerably complicates dynamics
+ Unless otherwise specified, we consider only quadrupoles with “normal”
orientation with ¢) = n /2
+ Skew coupling errors or intentional skew couplings can be important
- Leads to transfer of oscillations energy between x and y-planes

- Invariants much more complicated to construct/interpret A3
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The skew coupled equations of motion can be alternatively derived by
actively rotating the quadrupole equation of motion in the form:

(%51)) z B q 09¢
(Wbﬁb) LS - myEB2c? O
(Vbﬁb)/ ) _ q 09
(Vbﬁb) Y /{(S)y B m%) Bb c? 0y

+ Steps are then identical whether quadrupoles are electric or magnetic

SM Lund, USPAS, 2013 Accelerator Physics
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Appendix D: Axisymmetric Applied Magnetic or Electric Field
Expansion

Static, rationally symmetric static applied fields E“, B® satisfy the vacuum
Maxwell equations in the beam aperture:

V-E*=0 VXE*=0 V-B=0 VxB*=0
This implies we can take for some electric potential ¢“and magnetic potential ¢"":
Ea:_v¢e Ba:_vqu

which in the vacuum aperture satisfies the Laplace equations:
V2 =0 V2™ =0

We will analyze the magnetic case and the electric case 1s analogous. In
axisymmetric (0/00 = 0) geometry we express Laplace's equation as:

10 ([ 9™\ | 9?¢™
VQ m r.zZ) = —— T _|_ — O
A = e ( r ) 0z 9
¢""(r, z) can be expanded as (odd terms in r would imply nonzero B, = — g ;n

atr =0):

P (1, 2) = Z fQV(Z)TQV = fo+ f27“2 + f4’l“4 + ...
v=0

where fo = ¢"'(r = 0, z) is the on-axis potential D1
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Plugging ¢" into Laplace's equation yields the recursion relation for f,

(2v +2) fay2 + 4, =0

Iteration then shows that
m o (FD) 00, 2) N2
I(r2) =) (W2 0z (5)

v=0
Using BZ(r =0,z2) = B,o(z) = — (‘M%(O, ) and diffrentiating yields:
2

o,y O0bm (1Y P"TIBig(2) (!
Br(r.2) == or _Z( Dy —1)!  0z2v—1 (5)

a 0D, 0%Y B.o(2) /r\2v
Ba(r,2) == 0z Z ((V')) 8z2V( | (5)

V=

* Electric case immediately analogous and can arise in electrostatic Einzel
lens focusing systems often employed near injectors
* Electric case can also be applied to RF and induction gap structures in

the quasistatic (long RF wavelength relative to gap) limit. D2
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Appendix E: Thin Lens Equivalence for Thick Lenses

In the thin lens model for an orbit described by Hill's equation:

2" (s) + ky(s)x(s) =0

the applied focusing function K4 () is replaced by a “thin-lens” kick described

by:
Ko (S)

1
f

—0(s — sg) so = Optic Location = const
f = focal length = const

The transfer matrix to describe the action of the thin lens is found by integrating
the Hills's equation to be:

B Rl

X
X

€T
= My;
/ ] - kick x/ B
S—S S=S8

0 0

Graphical Interpretation:

x A

Thin Lens

SM Lund, USPAS, 2018
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For a free drift, Hill's equation is:

z'"(s) =0

with a corresponding transfer matrix solution:

o)l R e 2,

We will show that the thin lens and two drifts can exactly replace
Case 1) Piecewise constant  focusing lens: kz(S) = kK = const > 0
Case 2) Piecewise constant defocusing lens: k. (s) = —k = const < 0
Case 3) Arbitrary linear lens represented by: £(S)

This can be helpful since the thin lens + drift model is simple both to carry out
algebra and conceptually understand.

E2
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Case 1) The piecewise constant focusing transfer matrix M for k, =k >0
can be resolved as:

|
Thick Focusing Lens ' : d : d ' generally,
T :-l onlang =i
! . ! . : ' 2d > 5 — 5
1 1 F
5; S

- C(s) S(s)/VE
M (s]si) = - —VKS(s) C(s) ]

::(1) f(S)]'ll—l/ﬂs) (1)”(1) f(S)]
= Myrift - Miick - Mdrise

where C(s) = cos[Vr(s —s;)]  d(s) = tan[v'k(s — 5:)/2]/ vk
S(s) = sin[v/k(s — ;)] 1/f(s) = V&S(s)
This resolves the thick focusing lens into a thin-lens kick M ;.. between two
equal length drifts Mg;iet upstream and downstream of the kick
+ Result specifies exact thin-lens equivalent focusing element
+ Can also be applied to continuous focusing (in interval) and solenoid focusing
(in Larmor frame, see S2E and Appendix C) by substituting appropriately for

*+ Must adjust element length consistently with composite replacement E3
SM Lund, USPAS, 2018
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Case 2) The piecewise constant de-focusing transfer matrix ML, for k, = —x <0
can be resolved as:

) : d

1
1
= et ]
1
1

Thick Delocusing Lens generally.

' : |
- A, ————!

1 1 _D

‘L.' Y Ip 15‘

M, (s]s;) = - Ch(s) Sh(s)/vk ]

Qﬂ" < 5 — S5,

where
Ch(s) = cosh[v/k(s — s;)] d(s) = tanh[vk(s — s;)/2]/\/K
Sh(s) = sinh[vk(s — s;)] 1/f(s) = V/kSh(s)
+ Result 1s exact thin-lens equivalent defocusing element
+ Can be applied together with thin lens focus replacement to more simply

derive phase-advance formulas etc for AG focusing lattices
+ Must adjust element length consistently with composite replacement

SM Lund, USPAS, 2018

E4
Accelerator Physics 99



Case 3) General element replacement with an equivalent thin lens

Consider a general transport matrix:

My Mo ] detM = M1 Moy — Mi2Mo =1

M =
[ Mz Moo

+ Always true for linear optics, see Sec S5

A transfer matrix of a drift of length d1 followed by a thin lens of
strength / , followed by a drift of length dy gives:

1 ds 1 0 1 di
M rift2+thin4-drift] = 0 1 ' ~1/f 1 10 1

[ 1—ds/f di+dy—dids/f ]
—1/f 1—di/f

Setting M = Myifto+ thintdrift1
di = (M2 —1)/May
do = (M1 —1)/Mo;

—1/f = My,

* M9 implicitly involved due to unit determinant constraint

Discussions of this, and similar results can be found in older optics books

such as: Banford, The Transport of Charged Particle Beams, 1963. E5
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Comments:
* Shows that any linear optic (thick or thin) can be resolved into an
equivalent thin lens kick + drifts
- Use requires element effective length in drift + thin-lens-kick + drift to be
adjusted consistently
- - Care must be taken to interpret lattice period with potentially different
axial extent focusing elements correctly

* Orbits in thin-lens replacements may differ a little in max excursions
etc, but this shows simple and rapid design estimates can be made using
thin lens models 1f proper equivalences are employed

- Analysis of thin lens + drifts can simplify interpretation and algebraic steps

* Construct applies to solenoidal focusing also if the orbit 1s analyzed in
the Larmor frame where the decoupled orbit can be analyzed with Hill's
equation, but it does not apply in the laboratory frame

- Picewise contant (hard-edge) solenoid in lab frame can be resolved into a
rotation + thin-lens kick structure though (see Appendix C)

E6



S4: Transverse Particle Equations of Motion with

Nonlinear Applied Fields

In S1 we showed that the particle equations of motion can be expressed as:

S4A: Overview

/
<! 4 (Vbﬁb) - q E® +
L (wBy) T mmBEer
v BEc? 0%

q qB?

z x B9 +

mYpBpC mYpBpC

X

/

A

X Z

When momentum spread 1s neglected and results are interpreted in a Cartesian

coordinate system (no bends).

further reduced when the applied focusing fields are linear to:

0

(f}/bﬂb) /—I-/‘{, (S).’L‘: q 5
(Wbﬁb) myy By ¢ O
/ 0

Y sy =
(7 ) ’m% ) By c® Oy
where kz(8) = x-focusing function of lattice
Ky(s) = y-focusing function of lattice

SM Lund, USPAS, 2018
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describe the linear applied focusing forces and the equations are implicitly
analyzed 1in the rotating Larmor frame when B7 #0.

Lattice designs attempt to minimize nonlinear applied fields. However, the 3D
Maxwell equations show that there will always be some finite nonlinear applied
fields for an applied focusing element with finite extent. Applied field
nonlinearities also result from:

+ Design idealizations

+ Fabrication and material errors
The largest source of nonlinear terms will depend on the case analyzed.

Nonlinear applied fields must be added back in the idealized model when it 1s

appropriate to analyze their effects
+ Common problem to address when carrying out large-scale numerical

simulations to design/analyze systems

There are two basic approaches to carry this out:
Approach 1: Explicit 3D Formulation
Approach 2: Perturbations About Linear Applied Field Model

We will now discuss each of these in turn
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S4B: Approach 1: Explicit 3D Formulation

This 1s the simplest. Just employ the full 3D equations of motion expressed in
terms of the applied field components E“, B® and avoid using the focusing
functions Rz, Ry

Comments:
+ Most easy to apply in computer simulations where many effects are
simultaneously included
- Simplifies comparison to experiments when many details matter
for high level agreement
+ Simplifies simultaneous inclusion of transverse and longitudinal effects
- Accelerating field £'Z can be included to calculate changes in 55, Vb
- Transverse and longitudinal dynamics cannot be fully decoupled in
high level modeling — especially try when acceleration is strong in
systems like injectors
+Can be applied with time based equations of motion (see: S1)
- Helps avoid unit confusion and continuously adjusting complicated
equations of motion to i1dentify the axial coordinate s appropriately



S4C: Approach 2: Perturbations About Linear Applied Field Model

Exploit the linearity of the Maxwell equations to take:
1 =Ei|L + 0EY
B =B%|, + /B“

where
E° |, B, are the linear field components K, K
7 incorporated in Y
to express the equations of motion as:
/
2! (Wbﬁb) X o — q SE® — q SB® + q 5 B/
T e mBEE C mywBe Y mmBye
g 09
my; 57 c? Ox
y//_|_ (Wbﬁb)/y/—Fli y = q SE + q SB® _ q 5B
(V65s) o mm SR mwBe T mypBee 7
. q 09
mry; B2c? Oy
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This formulation can be most useful to understand the effect of deviations from
the usual linear model where intuition is developed

Comments:
+ Best suited to non-solenoidal focusing
- Simplified Larmor frame analysis for solenoidal focusing is only valid
for axisymmetric potentials ¢ = () which may not hold in the
presence of non-ideal perturbations.
- Applied field perturbations 0E , dB® would also need to be projected
into the Larmor frame
+ Applied field perturbations 0ET, 6B” will not necessarily satisty the
3D Maxwell Equations by themselves
- Follows because the linear field components E’|r, B|r
will not, in general, satisfy the 3D Maxwell equations by themselves
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Corrections and suggestions for improvements welcome!

These notes will be corrected and expanded for reference and for use in future

editions of US Particle Accelerator School (USPAS) and Michigan State
University (MSU) courses. Contact:

Prof. Steven M. Lund

Facility for Rare Isotope Beams
Michigan State University

640 South Shaw Lane

East Lansing, MI 48824

lund @frib.msu.edu
(517) 908 — 7291 office
(510) 459 - 4045 mobile

Please provide corrections with respect to the present archived version at:
https://people.nscl.msu.edu/~lund/uspas/ap_2018/

Redistributions of class material welcome. Please do not remove author credits.


mailto:lund@frib.msu.edu
https://people.nscl.msu.edu/~lund/uspas/ap_2018/
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