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S35: Linear Transverse Particle Equations of Motion without

Space-Charge, Acceleration, and Momentum Spread
SSA: Hill's Equation

Neglect:
» Space-charge effects: 0¢/0x ~ 0
» Nonlinear applied focusing and bends: E*, B® have only
* Acceleration: Vb0 =2 const linear focus terms
» Momentum spread effects: Vi =~ ByC

Then the transverse particle equations of motion reduce to Hill's Equation:
z"(s) + k(s)x(s) =0

x=_ particle coordinate

(i.e., x or y or possibly combinations of coordinates)
s = Axial coordinate of reference particle

d
| = P Derivative with respect to axial coordinate
S

(s) = Lattice focusing function (linear fields)
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For a periodic lattice:
w(s + L) = A(s)
L, = Lattice Period

/l/ Example: Hard-Edge Periodic Focusing Function

s/ L, [Lattice Periods] ///
For a ring (1.e., circular accelerator), one also has the “superperiod” condition:

k(s +C) = k(s)
C = N'L, = Ring Circumfrance

N = Superperiod Number

+ Distinction matters when there are (field) construction errors in the ring
- Repeat with superperiod but not lattice period
- See lectures on: Particle Resonances
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/// Example: Period and Superperiod distinctions for errors in a ring

* Magnet with systematic defect will be felt every lattice period
X Magnet with random (fabrication) defect felt once per lap

Lattice
Period

Sector .
%k K

One Lattice Period

Ring Lattice: 12 Periods * :
Triplet

a2
(SIS-18, GSI) Quadrupoles "
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S5B: Transfer Matrix Form of the Solution to Hill's Equation

Hill's equation is linear. The solution with 1nitial condition:

r(s = s;) = x(8;) s = s; = Axial location
7' (s =s;) = 2'(s;) of initial condition

can be uniquely expressed in matrix form (M 1s the transfer matrix) as:

Ty | =Mk | 5 |

= | S S | Lo |

Where C (S‘Sz) and S (S|Sz) are “‘cosine-like” and “sine-like” principal
trajectories satisfying:

C"(s|s;) + k(s)C(s|s;) =0 C(silsi) =1 C'(s4]s5) =0

S"(s]s;) + Kk(s)S(s|s;) =0 S(silsi) =0  S'(s;]s5) =1
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This follows trivially because:

x(s) = x(s;)C(s]s;) + x'(s;)S(s]s;)
satisfies the differential equation:

2" (s) + k(s)x(s) =0
with initial condition:

(s =s;) = x(s;)

x' (s =s;) = 2'(s;)
Because:

2" (s) + k(s)x(s) = x(s;) [C"(s|s;) + k(s)C(s]s;)]
+ 2'(8;) [S" (s|s:) + £(8)S(s|s;)] =0

since the terms 1n [...] vanish and the 1nitial condition is satisfied:
1 0
x(s;) = x(s;)C(si]s;) + x’(Si)S(ilé') = z(s;)

0 1
2’ (s;) = x(s;)Cs;lsi) + x'(8:)S (si]s;) = 2" (s4)
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Transfer matrices will be worked out in the problems for a few simple focusing
systems discussed in S2 with the additional assumption of piecewise constant (s)

1) Drift: £ =0 " =0

IM@bQ—[é i_*]

2) Continuous Focusing: Kk = k%o = const > 0 z' + k%ox =0
M(s]s;) — [ Cos[kgq(s — Si)] ﬁ sin|kgo(s — s;)] ]
—kposin|kgo(s — s;)]  cos|kgo(s — ;)]

3) Solenoidal Focusing: kK = k = const > 0 2"+ hkr =0
Results are expressed within the rotating Larmor Frame
(same as continuous focusing with reinterpretation of variables)

M(s]s;) = [ —VEsin[V&(s — ;)] cos|[VE(s — s;)]
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A

4) Quadrupole Focusing-Plane: k = Rk = const > (0 '+ kr =0
(Obtain from continuous focusing case)

slg.) = cos[VA(s — s;)] L gin[vA(s — s;)]
M(s|s;) { —Visin[Vi(s — s;)]  cos[Vi(s — s;)] }

5) Quadrupole DeFocusing-Plane: kK = —R = const < 0 r —hkr =20
(Obtain from quadrupole focusing case with /% —s j+/& ¢ =V —1)

M(s]s;) — cosh[vi(s — s;)] \}E sinh[v/&(s — ;)]
Z Visinh[vV#i(s — s;)]  cosh[vVi(s — s;)]
6) Thin Lens: ~(S) = %5(8 — 50) z' + %5(8 —sp)r =0

so = const = Axial Location Lens
f = const = Focal Length
0(x) = Dirac-Delta Function

1

M(sf1sy) = |

k|
—_ O
| I |
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S5C: Wronskian Symmetry of Hill's Equation

An important property of this linear motion is a Wronskian invariant/symmetry:
C(slsi)  S(slsq)
C'(slsi) 5'(slsi)
= CO(s]s;)S"(s]s;) — C'(s|s;)S(s|s;) =1

W(s|s;) = det M(s|s;) = det

/// Proof:  Abbreviate Notation C = (C(sl|s;) etc.

Multiply Equations of Motion for C and S by -S and C, respectively:
—S(C"+kC)=0
+C (8" 4+ kS)=0

Add Equations: 0
CS" — SC" + m(CS/SC) =0
dW L i /I / L " N
= —— _ds(CS C'S)=0CS"—-5C"=0

—> W = const
Apply 1nitial conditions:
Wi(s)=W(s;)=C;S,—C/S;=1-1-0-0=1 /1
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/// Example: Continuous Focusing: Transfer Matrix and Wronskian

k(s) = kg, = const > 0
Principal orbit equations are simple harmonic oscillators with solution:
C(s|s;) = coslkgo(s — s;)] C'(s|s;) = —kgo sinkgo(s — s;)]

sin|kso(s — ;)]
kso

S(s|s;) = S'(s|si) = cos[kgo(s — s;)]

Transfer matrix gives the familiar solution:

[w<s> ]_ [ coslkso(s —s))]  Sulheelazs) “() ]

—kgosinlkgo(s — s;)]  cos|kgo(s — s;)] ' (si)

Wronskian invariant 1s elementary:

W = cos®[kgo(s — 8;)] +sin?[kgo(s — s;)] = 1
/1]
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S3D: Stability of Solutions to Hill's Equation in a Periodic Lattice

The transfer matrix must be the same in any period of the lattice:

M(s + Lp|5i T Lp) = M(s]s;)

For a propagation distance s — s; satisfying
NL,<s—s, <(N+1)L,

the transfer matrix can be resolved as

N=0,1,2--

= M(s — NLy|s;) - |
Residual

M(s|s;) = M(s — NL,|s;) - M(s; + NLy|s;)
M(Si —|— Lp’SZ')]N

N Full Periods

For a lattice to have stable orbits, both x(s) and x'(s) should remain bounded on
propagation through an arbitrary number N of lattice periods. This is equivalent
to requiring that the elements of M remain bounded on propagation through any

number of lattice periods:

lim |MN7;]'
N — 00

< oo = Stable Motion

SM Lund, USPAS, 2018
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Clarification of stability notion: Unstable Orbit

e
50
0f
~50 ¢
~100

-0 . - - . L . . S . . . . . .

o 48 /m? where k # 0
/{ f—
0 otherwise

L,=0.5m
n=0.5

r [mm]

600 ¢
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200 £

200§
—400

0 5 10 15 20 ,
X —
s/ L, [Lattice Periods] (0)

. 1 1
For energetic H = -2'* + —ka* ~ Large, but # const

particle: 2 2
where |z’| small, |x| large

z' [mrad|

where |z| small, |x’| large

The matrix criterion corresponds to our intuitive notion of stability: as the

particle advances there are no large oscillation excursions in position and angle.
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To analyze the stability condition, examine the eigenvectors/eigenvalues of M for
transport through one lattice period:

M(s; + Lyls;) - E = A\E

E = Eigenvector

A = Higenvalue

+ Eigenvectors and Eigenvalues are generally complex
+ Eigenvectors and Eigenvalues generally vary with s;
+ Two independent Eigenvalues and Eigenvectors

- Degeneracies special case

Derive the two independent eigenvectors/eigenvalues through analysis of the
characteristic equation:  Apbreviate Notation

C/(SZ' -+ Lp‘Si) S/(SZ' + Lp|s7;) o C/ S/

Nontrivial solutions to M - E = \E exist when (non-invertable coeff matrix):

det [ g/—x g,_A ] — X2 (C+ SN+ (CS' —SC") =0

SM Lund, USPAS, 2018
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But we can apply the Wronskian condition:

CS' — SC' =1 Reminder:
and we make the notational definition M — [ ¢ S ]
T Cl S/
C+58 =TrM=2cosog
The characteristic equation then reduces to:
1
A2 —2\cosog+1=0 COS 0 = §Tr M(s; + Ly|s;)

The use of 2c0S0( to denote Tr M is in anticipation of later results
(see S6) where 00 is identified as the phase-advance of a stable orbit

There are two solutions to the characteristic equation that we denote A+

A4

cos og =t \/C082 oo — 1 = cosog +isinog = e

E_ = Corresponding Eigenvectors 1 =+v—1

Note that: AyA_ =1 |
Ay =1 / A\ Reciprocal Symmetry
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Consider a vector of initial conditions:

ExIR

The eigenvectors Fi+ span two-dimensional space. So any initial condition
vector can be expanded as:

Ly

[ CU:J ] :Oé+E_|_ -+ Od_E_

a4+ = Complex Constants

Thenusing M- E,. = \.E

M (s; 4 L,|s;) - [ if ] =a;AYE; + a AVE_

(

. N
Therefore, if ngnoo AL s bounded, then the motion is stable. This will always
be the case if |\ | = |e*?70| < 1, corresponding to 00 real with | cos o] < 1
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This implies for stability or the orbit that we must have:

1 1
5 | Trace M(s; + Ly|s;)| = 5]0(32 + Ly|s;) + 5" (s; + Lylsq)|

= |cosop| < 1

In a periodic focusing lattice, this important stability condition places restrictions
on the lattice structure (focusing strength) that are generally interpreted in terms
of phase advance limits (see: S6).
+ Accelerator lattices almost always tuned for single particle stability to
maintain beam control
- Even for intense beams, beam centroid approximately obeys single
particle equations of motion when image charges are negligible
+Space-charge and nonlinear applied fields can further limit particle stability
- Resonances: see: Particle Resonances ....
- Envelope Instability: see: Transverse Centroid and Envelope ....
- Higher Order Instability: see: Transverse Kinetic Stability
+We will show (see: S6) that for stable orbits 0o can be interpreted as the
phase-advance of single particle oscillations
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/l/ Example: Continuous Focusing Stability

k(s) = k%o = const > 0
Principal orbit equations are simple harmonic oscillators with solution:

C(s|s;) = coslkgo(s — s;)] C'(s|s;) = —kgosinfkgo(s — s;)]
sin|kso(s — ;)]

kg0
Stability bound then gives:

S(s|s;) =

S'(s|si) = cos[kgo(s — s;)]

1
5 [ Trace M(s; + Ly|s;)| = =|C(s; + Lp|s;) + S"(s; + Ly|s;)]

= | coslkgo(s —s:)]| <1

DO | —

» Always satisfied for real kgg
+Confirms known result using formalism: continuous focusing stable

- Energy not pumped into or out of particle orbit ///

The simplest example of the stability criterion applied to periodic lattices will be
given in the problem sets: Stability of a periodic thin lens lattice
+ Analytically find that lattice unstable when focusing kicks sufficiently strong
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More advanced treatments

* See: Dragt, Lectures on Nonlinear Orbit Dynamics, AIP Conf Proc 87 (1982)
show that symplectic 2x2 transfer matrices associated with Hill's Equation have
only two possible classes of eigenvalue symmetries:

1) Stable 2) Unstable. [attice Resonance
Tm & i3 Im#A _ —T
+ A hy = e + t A ?'*_ Ty €

L % — -
\ I /Ren,
X

—iG lﬁi".,i: |

1/, Ye

Occurs in bands when focusing
strength 1s increased beyond

0 < gg < 180° /period oo = 180° /period

Occurs for:

+ Limited class of possibilities simplifies analysis of focusing lattices
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Eigenvalue structure as focusing strength is increased

Weak Focusing:

+ Make ~ as small as needed (low phase advance 0¢)
* Always first eigenvalue case: [AL| =1, AL =1/A_=\"
Imlt ‘

C

‘Weak, Stable

0 1 2 3
s/ L, [Lattice Periods]

Stability Threshold:
* Increase K o stability limit (phase advance oo = 180°/Period )
+ Transition between firlst ?fnd second eigenvalue case: A4 = —1
mh;

'

x_k
Instability:

Threshold

‘Weak, Stable

s/ L, |Lattice Periods|

* Increase K beyond threshold (phase advance oy = 180° /Period )
* Second eigenvalue case: |AL| # 1,

ImAi.

v

= A

A
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[N
Re

A

Ay = 1/A_ Ai both real and negative

K Unstable

Threshold

0 1 2 3
s/ L, [Lattice Periods|
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Comments:
+ As K becomes stronger and stronger it 1s not necessarily the case that
instability persists. There can be (typically) narrow ranges of stability within
a mostly unstable range of parameters.
- Example: Stability/instability bands of the Matheiu equation
commonly studied in mathematical physics which is a special case of
Hills' equation.
+ Higher order regions of stability past the first instability band likely make little
sense to exploit because they require higher field strength (to generate
larger k) and generally lead to larger particle oscillations than for weaker
fields below the first stability threshold.
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S6: Hill's Equation: Floquet's Theorem and the
Phase-Amplitude Form of the Particle Orbit
S6A: Introduction

In this section we consider Hill's Equation:

2" (s) + k(s)z(s) =0
subject to a periodic applied focusing function
k(s + Ly) = w(s)

L, = Lattice Period

» Many results will also hold in more complicated form for a non-periodic x(s)
- Results less clean in this case
(initial conditions not removable to same degree as periodic case)
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S6B: Floquet's Theorem

Floquet's Theorem (proof: see standard Mathematics and Mathematical Physics Texts)

The solution to Hill's Equation x(s) can be written in terms of two linearly
independent solutions expressible as:

E

1

DN | —

. 1S
371(3) — w(s)e 7 Tr M(Si + Lp|8¢) — COS 0¢
w

(5)e~ s .y
onst = Characteristic Exponent

|
o

Where w(s) is a periodic function:

w(s + L) = w(s)

+ Theorem as written only applies for M with non-degenerate eigenvalues. But
a similar theorem applies in the degenerate case.
+ A similar theorem is also valid for non-periodic focusing functions
- Expression not as simple but has analogous form
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S6C: Phase-Amplitude Form of Particle Orbit

As a consequence of Floquet's Theorem, any (stable or unstable) nondegenerate
solution to Hill's Equation can be expressed in phase-amplitude form as:

x(s) = A(s) cosi(s) A(s) = Real-Valued Amplitude Function
A(s+ L,) = A(s) Y (s) = Real-Valued Phase Function

* Have not done anything yet: replace one function x(s) by two A(s), ¥(s)
+ Floquet’s theorem tells us we lose nothing in doing this

Derive equations of motion for A, % by taking derivatives of the
phase-amplitude form for x(s):

xr = Acosy
' = A’ cosy — Ay’ sinp
" = A" cosp — 24" siny — Ay sinp — AY'? cos

then substitute in Hill's Equation and isolate coefficients of sin), cos

' + kx = [A" + kA — AY'?] cosp — 24" + AY"]siny = 0
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"+ kr = [A" + kA — AY"?| cosp — 247" + AY"]sinyp =0

We are free to introduce an additional constraint between A and :
* Two functions A, 1) to represent one function x allows a constraint
Choose:

Eq. (1) |24 + Ay” =0 —  Coefficient of sin) zero

Then to satisfy Hill's Equation for all Y | the coefficient of oS ¥ must also
vanish giving:

Eq.(2) | A"+ kA - AY? =0 —  Coefficient of cos) zero

SM Lund, USPAS, 2018 Accelerator Physics 24



Eq. (1) Analysis (coefficient of sin) ): 2AY" + A" =0
Simplity:

2 11\ Assume for moment:
/g1 7 (A w)
24 + Ay = 2 =0 A+0
. Will show later
— (A (0 ) =0 that this assumption
Integrate once: met for all s
A*y)’ = const

One commonly rescales the amplitude A(s) in terms of an auxiliary amplitude
function w(s):

A(s) = Aw(s) A; = const = Initial Amplitude
such that Note:
20 — * [[Ai]] =[[w]] = sqrt(meters)
wy =1 » [[A]] = meters and [[A]] # [[4; 1]

This equation can then be integrated to obtain the phase-function of the particle:

° ds ); = const = Initial Phase
P(s) = Y; —|—/ = ‘
) () w0

Accelerator Physics 25
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Eq. (2) Analysis (coefficient of cos® ). A" 4+ rA — AyY'? =0
With the choice of amplitude rescaling, A = A,w and w2¢/ =1, Eq. (2)
becomes: 1

w”+/<;w——3:O
w

Floquet's theorem tells us that we are free to restrict w to be a periodic solution:

w(s + Ly) = w(s)

Reduced Expressions for x and x":
Using A = A;w and w?t’ = 1:

x = Acos

x' = A’ cosy — Ay’ sinp

xr = A;wcos Y P . -
— A ase-Space form of orbit

v = A;w cos — = sin in phase-amplitude form
w
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S6D: Summary: Phase-Amplitude Form of Solution to Hill's Eqn

z(s) = Ajw(s) cos(s) A; = const = Initial

/ / A Amplitude
x'(s) = Ajw'(s) cos(s) — sin(s) 1; = const = Initial Phase

w(s
where w(s) and 1(S) are amplitude- and phase-functions satisfying:
Amplitude Equations Phase Equations
1 1
1 . —0 / —
W' (s) + K(s)us) g O
wls+ Lp) = w(s) () = i + / g(s)
s, Wo(s
wis) >0 U(s) = i+ Ai(s)
Initial ( s = s; ) amplitude and phase are constrained by the particle initial
conditions as: (s =s;) = A;w; cos;
o r'(s = s;) = Ajw; cos; — é sin 1;
A;cos; = x(s = s;) /w; w; = w(s = s;)
A;sin; = x(s = s;)w, — 2’ (s = s;)w; w, = w'(s = s;)

SM Lund, USPAS, 2018 Accelerator Physics 27



S6E: Points on the Phase-Amplitude Formulation

1) w(s) can be taken as positive definite
w(s) >0

/l] Proof: Sign choices in w:
Let w(s) be positive at some point. Then the equation:

/! 1
w' +krkw——=0
w

Insures that w can never vanish or change sign. This follows because whenever w
becomes small, w’’ ~ 1 / w> > 0 can become arbitrarily large to turn w before

it reaches zero. Thus, to fix phases, we conveniently require that w > 0. 1)

»Proof verifies assumption made in analysis that A = A;w # 0

+Conversely, one could choose w negative and it would always remain negative
for analogous reasons. This choice 1s not commonly made.

*» Sign choice removes ambiguity in relating initial conditions x(s;), 33/(82')

to A;, ¥
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2) w(s) is a unique periodic function
+ Can be proved using a connection between w and the principal orbit functions
C and S (see: Appendix A and S7)
+ w(s) can be regarded as a special, periodic function describing the lattice
focusing function x(s)

3) The amplitude parameters
w; = w(s =s;)
w; = w'(s;)
depend only on the periodic lattice properties and are independent of the particle

initial conditions x(s;), '(s;)
4) The change in phase
° ds
A(s) = / -
s; W(8)

depends on the choice of initial condition s; . However, the phase-advance
through one lattice period

sitle g3
Ap(s; + Lp) = / w2(3)

7
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is independent of s; since w is a periodic function with period L,,
+ Will show later that (see S6F)
A¢(SZ —|— Lp) = 0y
is the undepressed phase advance of particle oscillations. This will help us
interpret the lattice focusing strength.

5) w(s) has dimensions [[w]] = Sqrt[meters]
+ Can prove inconvenient in applications and motivates the use of an alternative
“betatron” function 3
B(s) = w’(s)

with dimension [[3 ]] = meters (see: S7 and S8)

6) On the surface, what we have done: Transform the linear Hill's Equation to a
form where a solution to nonlinear axillary equations for w and 1) are needed via
the phase-amplitude method seems insane ..... why do it?
+ Method will help identify the useful Courant-Snyder invariant which will
aid interpretation of the dynamics (see: S7)
+ Decoupling of initial conditions in the phase-amplitude method will help
simplify understanding of bundles of particles in the distribution
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S6F: Relation between Principal Orbit Functions and
Phase-Amplitude Form Orbit Functions

The transfer matrix M of the particle orbit can be expressed in terms of the
principal orbit functions C and S as (see: S4):

Ty | =Mt | 0 [ = [ Sy St || o)

Use of the phase-amplitude forms and some algebra identifies (see problem sets):

C(s|s;) = ws) cos A (s) — wiw(s) sin Ap(s)

Wy

S(sls:) = wsw(s) sin Ads(s)
/() = () = ) cos dus) = (o wl'(s) ) sin A

w;w(s)

cos A)(s) + w;w'(s) sin Agp(s)

w(s)
A3 w; = w(s = s;)

A(s) = /: w2 (3) w; = w'(s = s;)

SM Lund, USPAS, 2018 Accelerator Physics 31



// Aside: Some steps in derivation: ¢ =; + Ay AY(s=s;) =0
x = A;wcos = Ajw cos(AyY + ;)

A; . i
= Aw COS Y — " siny = A;w’ cos(A@b + @bz) — i Sln(A@D + @Dz)
w

(*)

Initially: 5. — A cos
A; x;, A .
r. = A;wlcos; — — siny; = w,— — — sin;
w; w; w;
Or:
A; cos; = x; /w; )
o (2)
A;siny; = xyw; — x;w;

Use trigonometric formulas:
cos(AY + ;) = cos A cos; — sin A sin 1;
sin(A + ;) = sin At cos 1p; + cos A sin i,
Insert (1) and (2) in (*) for x and then rearrange and compare to x = Cx; + S«
to obtain: [---] = C(s]s;) [-+-]=S(s|s;)
X = [wﬂ cos Ay — wiw sin Aw] T; + |[w;w sin Ay| x;

(1)

Add steps and repeat with particle angle x’ to complete derivation /l
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//l Aside: Alternatively, it can be shown (see: Appendix A) that w(s) can be
related to the principal orbit functions calculated over one Lattice period by:

S(slsi)
S(Si + Lp‘SZ')
1 S(Sz + Lp|87;)

sin o

sitle g3
o) = =
/s - wi(s)

(]

w?(s) = B(s) =sin oy

2

S(slsi)

cosog — C(sls;)
S(Si -+ Lp’SZ')

C(S|S,,;) -+

The formula for 90 in terms of principal orbit functions is useful:
+ 00 (phase advance, see: S6QG) 1s often specified for the lattice and the
focusing function k() is tuned to achieve the specified value
+ Shows that w(s) can be constructed from two principal orbit integrations over
one lattice period
- Integrations must generally be done numerically for C and S
- No root finding required for initial conditions to construct periodic w(s)
- S; can be anywhere in the lattice period and w(s) will be independent
of the specific choice of S;
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» The form of w?(s) suggests an underlying Courant-Snyder Invariant
(see: S7 and Appendix A)
» = [ can be applied to calculate max beam particle excursions in the
absence of space-charge effects (see: S8)
- Useful in machine design
- Exploits Courant-Snyder Invariant
+ Techniques to map lattice functions from one point in lattice to another are
also presented in Appendix A and S7C
- Include efficient Lee Algebra derived expressions in S7C

/]
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S6G: Undepressed Particle Phase Advance

We can now concretely connect g for a stable orbit to the change in particle
oscillation phase A1) through one lattice period:

From S5D:

1
COS O = §Tr M(s; + Lp’Si)

¢ S
Apply the principal orbit representation of M M [ o g ]
Tr M(s; + Lp|s;) = C(s; + Lpl|si) + 5 (si + Lp|s;)

and use the phase-amplitude 1dentifications of C and S' calculated in S6F:

%Tr M(s; + Lyls;) = % w(siw—: Ly) + w(siw—li Lp)] cos A(s; + Ly)
+ % [w;w'(s; + L) — wiw(s; + Lyp)] sin Av(s; + L)
By periodicity:
w(s; + Ly) = w(s;) = w; coefficient of cos Ay =1
w'(s; + L) = w'(s;) = w) —  coefficient, of sin Ay =0
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Applying these results gives:

1
cos o9 = cos AY(s; + L) = §TI‘ M(s; + Lp|s;)

Thus, 00 1s identified as the phase advance of a stable particle orbit through one
lattice period:

sitle (g
o=t = [

7

+ Again verifies that 0¢ 1s independent of S; since w(s) 1s periodic with period
Ly
+ The stability criterion (see: S5)

1
§\Tr M(s; + Lp|s;)| = | cosop| < 1

1s concretely connected to the particle phase advance through one lattice
period providing a useful physical interpretation

Consequence:

Any periodic lattice with undepressed phase advance satisfying
o9 < m/period = 180° /period

will have stable single particle orbits.
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Discussion:

The phase advance o(1s an extremely useful dimensionless measure to
characterize the focusing strength of a periodic lattice. Much of conventional
accelerator physics centers on focusing strength and the suppression of resonance
effects. The phase advance 1s a natural parameter to employ in many situations to
allow ready interpretation of results in a generalizable manner.

We present phase advance formulas for several simple classes of lattices to help
build intuition on focusing strength:

1) Continuous Focusing Several of these

2) Periodic Solenoidal Focusing will be derived

3) Periodic Quadrupole Doublet Focusing in the problem sets
- FODO Quadrupole Limit

» Lattices analyzed as “hard-edge” with piecewise-constant ~(s)
and lattice period L,
+ Results are summarized only with derivations guided in the problem sets.

4) Thin Lens Limits
- Useful for analysis of scaling properties
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1) Continuous Focusing

“Lattice period” L, is an arbitrary length for phase accumulation

k(s) = k%o = const > 0

Parameters:

L, = Lattice Period

kgo = Strength

'y , !
rols)] | (Ka = Ry = Ky = const) K
30
a a -~
- L, - 5
| Lattice Perniod
Apply phase advance formulas: 1
w
1 -/
w”+k§0w—$=0 — Ko
sitle gg
: e [
oo = kgoly . w?

+ Always stable
- Energy cannot pump into or out of particle orbit
SM Lund, USPAS, 2018
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Rescaled Principal Orbit Evolution:
I —05m Cosine-Like Sine-Like
po 1: z(0) =1 mm 2 —

! O — O d !/ _
kgo = (m/6) rad/m z'(0) ra z'(0) = 1 mrad

_10f
S osf
& oof
o 05

~1.0¢ _

0 1 2 3 4 5 6

s/ L, |Lattice Periods|

= 2
S
£ o
~ ¥
=3 :

0 1 3 4 5 6

2
s/ L, |Lattice Periods]

SM Lund, USPAS, 2013 Accelerator Physics
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Phase-Space Evolution (see also S7):

* Phase-space ellipse stationary and aligned along x, x' axes
for continuous focusing

1

V=5 = kgo = const
w = 1/1/kgo = const

a=—ww =0
w' =0

B =w?* = 1/kgg = const

kgox® + x'% /kgy = € = const
' A

T W
N

|

SM Lund, USPAS, 2018 Accelerator Physics 40



2) Periodic Solenoidal Focusing

Results are interpreted in the rotating Larmor frame (see S2 and Appendix A)

Parameters:
%(3)‘";_"(@“?@) . L, = Lattice Period
| R ~~  n € (0,1] = Occupancy
| | k = Strength
" . .
§ i R | s Characteristics:
S d/2 14 d/2 0 df2t d=(1-n)L, nL, = Optic Length
- L - € =nly _ — s
| Lattice I{)eriod | (1 n)Lp o Drlft Length

Calculation (in problem sets) gives:

1 —
cos oy = cos(20) — Tn@ sin(20) O = g\/ELp

+ Can be unstable when & becomes large
- Energy can pump into or out of particle orbit
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Rescaled Larmor-Frame Principal Orbit Evolution Solenoid Focusing:
L,=0.5m

o9 =7/3 =60° (k = 8.558 m™?)

n=20.9

p—

=

—

=

1.0E

05E

0.0 E
~05FE
~1.0F
~15F
~2.0E

Cosine-Like Sine-Like

1: 2(0) =1mm 2: #(0) = 0 mm
7'(0) = 0 mrad

z'(0) = 1 mrad

3

2
s/ L, |Lattice Periods]

3/£p[

. . . . ~ ~/ . .
+ Principal orbits in ¥y — ¥ phase-space are identical
SM Lund, USPAS, 2018
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Phase-Space Evolution in the Larmor frame (see also: S7):
* Phase-Space ellipse rotates and evolves in periodic lattice
y — ¢’ phase-space properties same as in 7 — &’
- Phase-space structure in x-x', y-y' phase space 1s complicated

V% — 208F + BE? = € = const

00 02 o4 06 08 1o
s/ L, |Lattice Periods]

x’ 7’ T’ i T’
Ares, T / 7 ( \ Q\ Pt
‘“--______..-"’N O/ B k} N \Q N ‘---._._____.....-"’N
€ — const X X X xr X
Horizontal Diverging Upright Converging  Horizontal
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Comments on periodic solenoid results:
* Larmor frame analysis greatly simplifies results
- 4D coupled orbit in x-x', y-y' phase-space will be much more
intricate in structure
* Phase-Space ellipse rotates and evolves in periodic lattice
* Periodic structure of lattice changes orbits from simple harmonic

SM Lund, USPAS, 2013 Accelerator Physics
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3) Periodic Quadrupole FODO Lattice

Parameters: Characteristics:
L, = Lattice Period nL,/2=4{=F/D Len
n € (0,1] = Occupancy (1 —1n)L,/2 = d = Drift Len
k = Strength
Ke(S) (Fe = —Ky) —
| p— _}i —— —
d 4 d |
F Quad |« -t --i- -
' | >
. . D Quad ' 5
1 € | 1
R —r ——
- Ly g d=(1—n)L,/>
. Lattice Period 0 — n Lp /2
Phase advance formula (see problem sets) reduces to:
1 —
cos o = cos © cosh © + —@(Cos © sinh © — sin O cosh O)
Ui
n =
1 — = —+\/|k|L
—( 5 )’ ©? sin © sinh © 2 ALy
U

+ Analysis shows FODO provides stronger focus for same integrated field

gradients than asymmetric doublet (see following) due to symmetry
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Rescaled Principal Orbit Evolution FODO Quadrupole:

L,=0.5m Cosine-Like Sine-Like
oo = /3 =60° (k = 39.24 m~2)1: #(0) =1mm 2: 2(0) =0 mm
n=0.5 z'(0) =0mrad  2/(0) = 1 mrad

4 5 6

s/ L, |Lattice Periods]

2
s/ L, |Lattice Periods|

Accelerator Physics 46
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Phase-Space Evolution (see also: S7):

vr® — 2axx’ + Ba’* = € = const

0.8 1.0

O.OIIIOI.Qi..Oiﬁl. .Oiﬁ.
's/L, [Lattice Periodg|

! x’ ! x’ z!

L i A7
Ve o oo

Diverging Horizontal Converging Upright Diverging

Area r
e = const

Y
&
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Comments on periodic FODO quadrupole results:

*+ Phase-Space ellipse rotates and evolves in periodic lattice

- Evolution more intricate for Alternating Gradient (AG) focusing
than for solenoidal focusing in the Larmor frame
+ Harmonic content of orbits larger for AG focusing than
solenodial focusing

+ Orbit and phase space evolution analogous in y-y' plane

- Simply related by an shift in s of the lattice
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Extra: FODOQ drift symmetry relaxed: Periodic Quadrupole Doublet Focusing

) | (=) ; . Parameters:
T T KT - L, = Lattice Period
..ﬁ..i..nl?’f%i.. “2 . n € (0,1] = Occupancy

FQ”"‘dl ’ ’ » « € [0,1] = Syncopation
?1171"2-1 D Quad ® Kk = Strength

S N R/ _ Characteristics:
- I, - dj=al-niL, nLp/2 =F/D Len
| Lattice Period | dy=(l-e)(1-m)L, a(1l —n)L, = Drift Len d;

1 —«a)(1 —mn)L, = Drift Len ds
p

Calculation gives:

1 _
cos op = cos O cosh © + —n@(cos © sinh © — sin © cosh O)

{ ]
1 — 2
—2a(1 — @) ( 277) ©%sin ©sinh © 2
Uy
+ Can be unstable when s becomes large

- Energy can pump into or out of particle orbit
SM Lund, USPAS, 2018
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Comments on Parameters:

+ The “syncopation” parameter & measures how close the Focusing (F) and
DeFocusing (D) quadrupoles are to each other in the lattice

=0 dy =0 dy = (1 =n)L
a € |0,1] ° — @ g

a=1 - di=1-nL, dy=0

The range « € [1/2,1] can be mappedto o € [0,1/2]
by simply relabeling quantities. Therefore, we can take:

a € (0,1/2]

*» The special case of a doublet lattice with ov = 1/2 corresponds to equal drift
lengths between the F and D quadrupoles and is called a FODO lattice

04:1/2 — dlzdgzd:(l—n)Lp/Z
Phase advance constraint will be derived for FODO case in

problems (algebra much simpler than doublet case)
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Using these results, plot the Field Gradient and Integrated Gradient for
quadrupole doublet focusing needed for g = 80° per lattice period

Gradient ~ \/%\Lg ~ G
Integrated Gradient ~ 77\/%\[/12? /2 ~ GY

oo = 80° /(Lattice Period) Quadrupole Doublet

I L 6
ol a=0 01,0203 0.4 0.5 5‘?
3G I 1 = 5
) = 40} 5|
- ! T o4 -
5{-\:\130.} @ >~ 4.1
5 : SRS
220t B
@ 3 + = 3.t
R — B _
L P |
or- - . ... = 2.
0 0.2 0.4 0.6 0.8 L

7, Oceupancy [1] 1, Oceupancy [1]
+ Exact solutions plotted dashed almost overlay with approx thin lens (next sec)
+ Gradient and integrated gradient required depend only weakly on syncopation
factor & when « 1s near or larger than %2
+ Stronger gradient required for low occupancy 7) but integrated gradient varies
comparatively less with 7) except for small & m
SM Lund, USPAS, 2018 Accelerator Physics 51



Contrast of Principal Orbits for different focusing:

* Use previous examples with “equivalent” focusing strength 09 = 60°
+ Note that periodic focusing adds harmonic structure: increasing for AG focus

1) Continuous Focusing
1.0f

=) 05F
=

0.0f

Simple Harmonic Oscillator

= 9%F
—1.0F

2 3 4 5
s/ L, |Lattice Periods]

2) Periodic Solenoidal Focusing (Larmor Frame)

1.0E . . . .
' Simple harmonic oscillations

= o0 modified with additional
| _10 . . .
oL harmonics due to periodic

6 1 2 3 4 5 6 focus
s/ L, |Lattice Periods]
3) Perlodlc FODO Quadrupole Doublet Focusmg

Simple harmonic oscillations
more strongly modified due
to periodic AG focus

2 3 4
s/ L, |Lattice Periods]
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4) Thin Lens Limits
Convenient to simply understand analytic scaling

K (S) = %5(5 — 80)

so = Optic Location = const

f = focal length = const

Transfer Matrix:

E e VRN F

0

Graphical Interpretation:
x A

Thin Lens

<

SM Lund, USPAS, 2013 Accelerator Physics
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The thin lens limit of “thick” hard-edge solenoid and quadrupole focusing lattices
presented can be obtained by taking:

1 :

. L — then take lim
k=

Solenoids: nfL, 10

2 :
L R = then take lim
Quadrupoles: Kk = fL, oy

This obtains when applied in the previous formulas:
(11— %%, thin-lens periodic solenoid
COS 0 = { 7 \2 .
1-5(1—a) <Tp) , thm—llens quadrupole doublet

‘ a = 5 = FODO

These formulas can also be derived directly from the drift and thin lens transfer
matrices as

Periodic Solenoid

1 1 1L
cosaoz—Trll Lp][ 1 O]: __r

27 [0 1)[-F 1 27

Periodic FODO Quadrupole Doublet
2
1 1 0|1 aLy,| |1 O} |1 (1-a)L,| Q L,
e[y 5 ] A 741500 (s
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Expanded phase advance formulas (thin lens type limit and similar) can be useful
in system design studies
+ Desirable to derive simple formulas relating magnet parameters to o
- Clear analytic scaling trends clarify design trade-offs
+ For hard edge periodic lattices, expand formula for cos oy to leading order

in © =+/|k|nL,/2

/// Example: Periodic Quadrupole Doublet Focusing:
Expand previous phase advance formula for syncopated quadrupole doublet to
obtain:

coso0 =1 = (n%3L2§)2 {(1 - %77> —4 (O‘ - %)2 (1 - 77)2}

where:
G :
—, Magnetic Quadrupoles .
R = { [B% © _ ? P G = Hard-Edge
Bvc[Bp]? Electric (Juadrupoles Field Gradient
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Appendix A: Calculation of w(s) from Principal Orbit Functions

Evaluate principal orbit expressions of the transfer matrix through one lattice
period using

w(s; + Ly) = w;
/

w'(s; + L,) = w;
and

sitle (g
Ap(si + Lyp) = / w2(s) 0

7

to obtain (see SOF for principal orbit formulas in phase-amplitude form):

Example: C(s|s;) = ws) cos Ap(s) — ww(s) sin A(s)

Wy

—> C(s; + Ly|s;) = cos og — w;w; sin o

S(Sz‘ + Lp‘SZ) = ”LUZ2 sin og

w’L

1
C'(s; + L,|s;) = — (—2 + wzw;> sin o

/ /] .
S (Sz + Lp 37,) — COSO(g + w;w; S11 0
Al
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Giving:

W — S(si + Ly|si) Apply C(s|s;) Eqn.
L sin o

w;, = cos o — Cfsi + L.p‘si) Apply S(s|s;) Eqn.

\/S(Si T Lp‘si) S 0o + w; Result Above

Or 1n terms of the betatron formulation (see: S7 and S8) with
B =w? B =2wuw

S(s; + Lylsi)
sin oy
, 2[cosag — C(s; + Lyl|si)]

B = 2w;w,, =

2
5@':107; —

sin o

Next, calculate w from the principal orbit expression (S6F) in phase-amplitude
forn S

= sin A
wi,’w S = S(s|s;) etc.
EC—I_ ES-COSA@D A5
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Square and add equations:

( S )2 (wiC w;s>2
+ + =1
w; W w w

+ This result reflects the structure of the underlying Courant-Snyder invariant
(see: S7)

Gives:

2 S ’ / 2
w*=— ] + (w;C+ w,S)

Wy
Use wj, w; previously identified and write out result:

. . S?(s|s;)
wi(s) = Bls) = stinoogr Lp|s:)

S11l O

2

COSOpg — C(SZ + Lp’SZ') S(S|SZ)

S(Sq; + Lp|8i)

Csls) +

+ Formula shows that for a given 00 (used to specity lattice focusing strength),
w(s) 1s given by two linear principal orbits calculated over one lattice period
- Easy to apply numerically

A3

SM Lund, USPAS, 2018 Accelerator Physics 58



An alternative way to calculate w(s) is as follows. 1% apply the phase-amplitude
formulas for the principal orbit functions with:
S; — S

s — s+ L,
C(s+ Ly|s) = cosog — w(s)w'(s) sin og

—
S(s + Lyls) = w?(s) sin oy

S(s+ Lpls) _ Mia(s + Lpls)
sin o N sin oy

w?(s) = B(s) =

*» Formula requires calculation of S(s + L,|s) at every value of s within
lattice period

* Previous formula requires one calculation of C'(sl|s;), S(s|s;)
for s; < s <s; + L, and any value of s;

A4
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Matrix algebra can be applied to simplify this result:
| | | |

r
| | | |

S; s $; + Ly s+ L,

M(s + Lp|si + Lp) - M(s; + Lyp|s)

M(s]s;) - M(s; + Ly|s) - [M(s]s;) - M (s]s;)]
M(s]s;) - M(s; + Ly|s;) - M (s]s;)

M(s + Lp‘s)

M(s + Lyp|s) = M(sls;) - M(s; + Lp|si) - M~ (s]s;)

+ Using this result with the previous formula allows the transfer matrix to be
calculated only once per period from any initial condition

+ Using: Appl.y’Wronskian
cC S . g/ _ g condition:
M={¢o o M7= _¢ ¢ det M = 1

The matrix formula can be shown to the equivalent to the previous one

+ Methodology applied in: Lund, Chilton, and Lee, PRSTAB 9 064201 (2006)

to construct a fail-safe iterative matched envelope including space-charge A5
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Corrections and suggestions for improvements welcome!

These notes will be corrected and expanded for reference and for use in future

editions of US Particle Accelerator School (USPAS) and Michigan State
University (MSU) courses. Contact:

Prof. Steven M. Lund

Facility for Rare Isotope Beams
Michigan State University

640 South Shaw Lane

East Lansing, MI 48824

lund @frib.msu.edu
(517) 908 — 7291 office
(510) 459 - 4045 mobile

Please provide corrections with respect to the present archived version at:
https://people.nscl.msu.edu/~lund/uspas/ap_2018/

Redistributions of class material welcome. Please do not remove author credits.
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